Menu
July 7, 2019  |  

Complete genome sequence of Staphylococcus equorum KS1039 isolated from Saeu-jeotgal, Korean high-salt-fermented seafood.

Staphylococcus equorum KS1039 was isolated from a form of traditional Korean high-salt-fermented seafood called Saeu-jeotgal, and exhibited growth at a NaCl (w/v) concentration of 25%. Comparative genome analyses with two other strains revealed the presence of two potassium voltage-gated channel genes uniquely in KS1039, which might be involved in salt tolerance. This first complete genome sequence of the species will increase our understanding of the genetic factors allowing it to be safely consumed by humans and to inhabit high-salt environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Clostridium butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory.

Clostridium butyricum is an important fragrance-producing bacterium in the traditional Chinese flavor liquor-making industry. Here the complete genome sequence of C. butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory is presented. The genome is 4,618,327bp with the GC content of 28.74% and a plasmid of 8060bp. This is the first complete genome sequence of C. butyricum strains available so far. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Lactobacillus acidophilus MN-BM-F01.

Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. Copyright © 2016 Yang et al.


July 7, 2019  |  

The identification of novel diagnostic marker genes for the detection of beer spoiling Pediococcus damnosus strains using the BlAst Diagnostic Gene findEr.

As the number of bacterial genomes increases dramatically, the demand for easy to use tools with transparent functionality and comprehensible output for applied comparative genomics grows as well. We present BlAst Diagnostic Gene findEr (BADGE), a tool for the rapid prediction of diagnostic marker genes (DMGs) for the differentiation of bacterial groups (e.g. pathogenic / nonpathogenic). DMG identification settings can be modified easily and installing and running BADGE does not require specific bioinformatics skills. During the BADGE run the user is informed step by step about the DMG finding process, thus making it easy to evaluate the impact of chosen settings and options. On the basis of an example with relevance for beer brewing, being one of the oldest biotechnological processes known, we show a straightforward procedure, from phenotyping, genome sequencing, assembly and annotation, up to a discriminant marker gene PCR assay, making comparative genomics a means to an end. The value and the functionality of BADGE were thoroughly examined, resulting in the successful identification and validation of an outstanding novel DMG (fabZ) for the discrimination of harmless and harmful contaminations of Pediococcus damnosus, which can be applied for spoilage risk determination in breweries. Concomitantly, we present and compare five complete P. damnosus genomes sequenced in this study, finding that the ability to produce the unwanted, spoilage associated off-flavor diacetyl is a plasmid encoded trait in this important beer spoiling species.


July 7, 2019  |  

Complete genome sequence of Lactobacillus helveticus CAUH18, a potential probiotic strain originated from koumiss.

Here we report the complete genome sequence of Lactobacillus helveticus CAUH18, a new strain isolated from traditional fermented dairy product koumiss. Its genome has a circular 2.16Mb chromosome with no plasmid. The genome sequence indicated that this strain harbors a gene cluster involved in a novel exopolysaccharides (EPS) biosynthesis and a gene encoding cell-surface aggregation-promoting factors (APFs) to facilitate its colonization in gastrointestinal tract (GIT). This genome sequence provides a basis for further studies about its molecular genetics and probiotic functions. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Pseudoalteromonas rubra SCSIO 6842, harboring a putative conjugative plasmid pMBL6842.

Pseudoalteromonas is a genus of Gram-negative and is ubiquitously distributed in the ocean. Many Pseudoalteromonas species are capable of producing pigments, which can serve as an alternative source to replace synthetic pigments used in the food industry. Prodigiosins belong to a family of secondary metabolite characterized by a common pyrrolyl pyrromethane skeleton, and have been successfully applied to yogurt, milk and carbonated drinks as substitutes for synthetic additives. The strain Pseudoalteromonas rubra SCSIO 6842 can produce cycloprodigiosin and harbors a conjugative plasmid. Here we report the complete genome of P. rubra SCSIO 6842 for a better understanding of the molecular basis of cycloprodigiosin production and regulation. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Streptococcus thermophilus MN-BM-A01, a strain with high exopolysaccharides production.

Streptococcus thermophilus MN-BM-A01 (ST MN-BM-A01) (CGMCC No. 11383) was a strain isolated from Yogurt Block in Gansu, China. The yogurt fermented with this strain has good flavor, acidity, and viscosity. Moreover, ST MN-BM-A01 could produce a high level of EPS which can confer the yogurt with improved rheological properties. We reported the complete genome sequence of ST MN-BM-A01 that contains 1,876,516bp encoding 1704 coding sequences (CDSs), 67 tRNA genes and 6 rRNA operons. The genomic sequence indicated that this strain included a 35.3-kb gene cluster involved in EPS biosynthesis. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of probiotic Lactobacillus reuteri ZLR003 isolated from healthy weaned pig.

Lactobacillus reuteri ZLR003 was isolated from the caecum mucosa of healthy weaned pigs with displaying probiotic properties in our laboratory. Here, we present the complete genome sequence of L. reuteri ZLR003, which consists of a circular 2, 234, 097bp chromosome (G+C content of 38.66%). Such information will provide insights into the molecular mechanism of its probiotic activity and facilitate its application in animal production. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Genetic diversity of O-antigens in Hafnia alvei and the development of a suspension array for serotype detection.

Hafnia alvei is a facultative and rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. Although it has been more than 50 years since the genus was identified, very little is known about variations among Hafnia species. Diversity in O-antigens (O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to different hosts and situations and variability in the environment. Antigenic variation is also an important factor in pathogenicity that has been used to define clones within a number of species. The genes that are required to synthesize OPS are always clustered within the bacterial chromosome. A serotyping scheme including 39 O-serotypes has been proposed for H. alvei, but it has not been correlated with known OPS structures, and no previous report has described the genetic features of OPS. In this study, we obtained the genome sequences of 21 H. alvei strains (as defined by previous immunochemical studies) with different lipopolysaccharides. This is the first study to show that the O-antigen gene cluster in H. alvei is located between mpo and gnd in the chromosome. All 21 of the OPS gene clusters contain both the wzx gene and the wzy gene and display a large number of polymorphisms. We developed an O serotype-specific wzy-based suspension array to detect all 21 of the distinct OPS forms we identified in H. alvei. To the best of our knowledge, this is the first report to identify the genetic features of H. alvei antigenic variation and to develop a molecular technique to identify and classify different serotypes.


July 7, 2019  |  

Ploidy influences the functional attributes of de novo lager yeast hybrids.

The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.


July 7, 2019  |  

Complete genome sequence of Photobacterium sp. strain J15, isolated from seawater of southwestern Johor, Malaysia.

Here, we report the genome sequences of Photobacterium sp. strain J15, isolated from seawater in Johor, Malaysia, with the ability to produce lipase and asparaginase. The PacBio genome sequence analysis of Photobacterium sp. strain J15 generated revealed its potential in producing enzymes with different catalytic functions. Copyright © 2016 Roslan et al.


July 7, 2019  |  

Complete genome sequence of Brevibacterium linens SMQ-1335.

Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G+C content, 3,848 open reading frames, and 61 structural RNAs. A new type I restriction-modification system was identified. Copyright © 2016 de Melo et al.


July 7, 2019  |  

Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms.

Lactobacilli strains have been considered as important candidates for manufacturing “natural food”, due to their antimicrobial properties and generally regarded as safe (GRAS) status. Lactobacillus plantarum LZ206 is a potential probiotic strain isolated from raw cow milk, with antimicrobial activity against various pathogens, including Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), Gram-negtive bacteria (Escherichia coli and Salmonella enterica), and fungus Candida albicans. To better understand molecular base for its antimicrobial activity, entire genome of LZ206 was sequenced. It was revealed that genome of LZ206 contained a circular 3,212,951-bp chromosome, two circular plasmids and one predicted linear plasmid. A plantaricin gene cluster, which is responsible for bacteriocins biosynthesis and could be associated with its broad-spectrum antimicrobial activity, was identified based on comparative genomic analysis. Whole genome sequencing of L. plantarum LZ206 might facilitate its applications to protect food products from pathogens’ contamination in the dairy industry. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.