fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 5, 2021

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)

Read More »

Friday, February 5, 2021

ASHG Virtual Poster: Enrichment of unamplified DNA and long-read SMRT Sequencing to unlock repeat expansion disorders

PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.

Read More »

Friday, February 5, 2021

Tutorial: Base modification detection, base modification and motif analysis application [SMRT Link v5.0.0]

This tutorial provides an overview of the Base Modification and Motif analysis application for identifying common bacterial epigenetic modifications and analyzing methyltransferase recognition motifs. SMRT Analysis software supports epigenetic research by measuring the rate of DNA base incorporation during Single Molecule, Real-Time Sequencing. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Friday, February 5, 2021

AGBT Virtual Poster: Analysis method for amplification-free SMRT sequencing and assessment on repeat expansions in Huntington’s disease

Adam Ameur from the National Genomics Infrastructure at SciLifeLab presented this poster at AGBT 2017. In it, he details a validation study for the use of CRISPR/Cas9 to capture genomic targets without the use of amplification. Results from 12 Huntington’s patients indicate that this approach paired with SMRT Sequencing generates accurate repeat counts in the HTT gene.

Read More »

Friday, February 5, 2021

AGBT Virtual Poster: Interspecies interation amoung meat spoilage-related lactic acid bacteria

In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.

Read More »

Friday, February 5, 2021

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Friday, February 5, 2021

Webinar: An introduction to PacBio’s long-read sequencing & how it has been used to make important scientific discoveries

In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.

Read More »

Friday, February 5, 2021

Webinar: Beginner’s guide to PacBio SMRT Sequencing data analysis

PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing

Read More »

Friday, February 5, 2021

User Group Meeting: Sequencing chemistry & application updates

To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.

Read More »

Friday, February 5, 2021

Video: Introduction to PacBio highly accurate long-read sequencing

PacBio Sequencing is powered by Single Molecule, Real-Time (SMRT) Sequencing technology. The Sequel II System offers the affordable, highly accurate long reads needed to gain comprehensive views of genomes, transcriptomes, and epigenomes. Watch this video to get to know the Sequel II System, explore the key advantages of SMRT Sequencing, and learn how its applications can be used to drive new discoveries.

Read More »

Friday, February 5, 2021

Webinar: Sequencing 101 – How long-read sequencing improves access to genetic information

In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.

Read More »

Friday, February 5, 2021

PAG Conference: PacBio update on products and HiFi applications

In this talk at PAG 2020, PacBio Plant and Animal Sciences Marketing Manager Michelle Vierra discusses recent updates to Single Molecule, Real-Time (SMRT) Sequencing technology, including the Sequel II System, updated protocols for low-input as well as other upcoming developments.

Read More »

Friday, February 5, 2021

SMRT Leiden: Epigenomics in the ERA of third-generation sequencing: A large-scale study of the human pathogen Clostridioides difficile

In this SMRT Leiden 2020 Online Virtual Event presentation Pedro Oliveira of Mount Sinai shares his research on Clostridioides – a leading cause of nosocomial-acquired diarrhea and colitis across the developed world. In this study, Oliveira and coworkers performed the first comprehensive DNA methylome analysis of 36 human C. difficile isolates from a hospital setting using SMRT Sequencing and comparative epigenomics.

Read More »

1 2 3 4 5 6 30

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, December 3, 2021

Stay
Current

Visit our blog »