July 19, 2019  |  

Genome modification in Enterococcus faecalis OG1RF assessed by bisulfite sequencing and Single-Molecule Real-Time Sequencing.

Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged, reducing treatment options for these infections. MDR E. faecalis strains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDR E. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can be distinguished from self DNA. A cognate restriction endonuclease digests improperly modified nonself DNA. Little is known about R-M in E. faecalis. Here, we use genome resequencing to identify DNA modifications occurring in the oral isolate OG1RF. OG1RF has one of the smallest E. faecalis genomes sequenced to date and possesses few MGEs. Single-molecule real-time (SMRT) and bisulfite sequencing revealed that OG1RF has global 5-methylcytosine (m5C) methylation at 5′-GCWGC-3′ motifs. A type II R-M system confers the m5C modification, and disruption of this system impacts OG1RF electrotransformability and conjugative transfer of an antibiotic resistance plasmid. A second DNA MTase was poorly expressed under laboratory conditions but conferred global N(4)-methylcytosine (m4C) methylation at 5′-CCGG-3′ motifs when expressed in Escherichia coli. Based on our results, we conclude that R-M can act as a barrier to MGE acquisition and likely influences antibiotic resistance gene dissemination in the E. faecalis species.The horizontal transfer of antibiotic resistance genes among bacteria is a critical public health concern. Enterococcus faecalis is an opportunistic pathogen that causes life-threatening infections in humans. Multidrug resistance acquired by horizontal gene transfer limits treatment options for these infections. In this study, we used innovative DNA sequencing methodologies to investigate how a model strain of E. faecalis discriminates its own DNA from foreign DNA, i.e., self versus nonself discrimination. We also assess the role of an E. faecalis genome modification system in modulating conjugative transfer of an antibiotic resistance plasmid. These results are significant because they demonstrate that differential genome modification impacts horizontal gene transfer frequencies in E. faecalis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Genomic confirmation of vancomycin-resistant Enterococcus transmission from deceased donor to liver transplant recipient.

In a liver transplant recipient with vancomycin-resistant Enterococcus (VRE) surgical site and bloodstream infection, a combination of pulsed-field gel electrophoresis, multilocus sequence typing, and whole genome sequencing identified that donor and recipient VRE isolates were highly similar when compared to time-matched hospital isolates. Comparison of de novo assembled isolate genomes was highly suggestive of transplant transmission rather than hospital-acquired transmission and also identified subtle internal rearrangements between donor and recipient missed by other genomic approaches. Given the improved resolution, whole-genome assembly of pathogen genomes is likely to become an essential tool for investigation of potential organ transplant transmissions.


July 19, 2019  |  

Complete genome sequences of isolates of Enterococcus faecium sequence type 117, a globally disseminated multidrug-resistant clone.

The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. Copyright © 2017 Tedim et al.


July 7, 2019  |  

micropan: an R-package for microbial pan-genomics.

A pan-genome is defined as the set of all unique gene families found in one or more strains of a prokaryotic species. Due to the extensive within-species diversity in the microbial world, the pan-genome is often many times larger than a single genome. Studies of pan-genomes have become popular due to the easy access to whole-genome sequence data for prokaryotes. A pan-genome study reveals species diversity and gene families that may be of special interest, e.g because of their role in bacterial survival or their ability to discriminate strains.We present an R package for the study of prokaryotic pan-genomes. The R computing environment harbors endless possibilities with respect to statistical analyses and graphics. External free software is used for the heavy computations involved, and the R package provides functions for building a computational pipeline.We demonstrate parts of the package on a data set for the gram positive bacterium Enterococcus faecalis. The package is free to download and install from The Comprehensive R Archive Network.


July 7, 2019  |  

Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.


July 7, 2019  |  

Complete genome sequence of Enterococcus durans KLDS6.0930, a strain with probiotic properties.

Enterococcus durans KLDS6.0930 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. The complete genome sequence of E. durans KLDS6.0930 was carried out using the PacBio RSII platform. The genome contains a circular chromosome and two circular plasmids. Genome sequencing information provides the genetic basis for bioinformatics analysis of bile salt and acid tolerance, cell adhesion, and molecular mechanisms responsible for lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium.

Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified-one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation.

Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.


July 7, 2019  |  

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal group was sequenced using long-read technology to close a 37 kb vanA plasmid.Phylogeny revealed a polyclonal structure where 495 VREfm isolates were divided into 13 main groups and 7 small groups. The majority of the isolates were located in three groups (n?=?44, 100 and 218) and clonal spread of VREfm between wards and hospitals was identified. Five Tn1546-like transposon types were identified. A dominant truncated transposon (type 4, 92%) was spread across all but one VREfm group. The closed vanA plasmid was highly covered by reads from isolates containing the type 4 transposon.This study suggests that it was the dissemination of the type 4 Tn1546-like transposon and plasmid via horizontal transfer to multiple populations of E. faecium, followed by clonal spread of new VREfm clones, that contributed to the increase in and diversity of VREfm in Danish hospitals.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium.

From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments.


July 7, 2019  |  

Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing.

Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission.A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated with bloodstream infections in 15 patients in neighboring hospitals, and 456 patients across the United Kingdom and Ireland.The majority of infections in the 293 patients were hospital-acquired (n = 249) or healthcare-associated (n = 42). Phylogenetic analysis showed that 291 of 293 isolates resided in a hospital-associated clade that contained numerous discrete clusters of closely related isolates, indicative of multiple introductions into the hospital followed by clonal expansion associated with transmission. Fine-scale analysis of 6 exemplar phylogenetic clusters containing isolates from 93 patients (32%) identified complex transmission routes that spanned numerous wards and years, extending beyond the detection of conventional infection control. These contained both vancomycin-resistant and -susceptible isolates. We also identified closely related isolates from patients at Cambridge University Hospitals NHS Foundation Trust and regional and national hospitals, suggesting interhospital transmission.These findings provide important insights for infection control practice and signpost areas for interventions. We conclude that sequencing represents a powerful tool for the enhanced surveillance and control of nosocomial E. faecium transmission and infection.


July 7, 2019  |  

Characterization of Class IIa bacteriocin resistance in Enterococcus faecium.

Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium’s resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS’s role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Whole genome characterization of a naturally occurring vancomycin-dependent Enterococcus faecium from a patient with bacteremia.

Vancomycin-dependent enterococci are a relatively uncommon phenotype recovered in the clinical laboratory. Recognition and recovery of these isolates are important, to provide accurate identification and susceptibility information to treating physicians. Herein, we describe the recovery of a vancomycin-dependent and revertant E. faecium isolates harboring vanB operon from a patient with bacteremia. Using whole genome sequencing, we found a unique single nucleotide polymorphism (S186N) in the D-Ala-D-Ala ligase (ddl) conferring vancomycin-dependency. Additionally, we found that a majority of in vitro revertants mutated outside ddl, with some strains harboring mutations in vanS, while others likely containing novel mechanisms of reversion. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale.

Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin-resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™ 9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain-specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding that suggests the carbohydrate utilization capacity of E. hirae R17 may be more extensive when compared with the other three bacterial species (spp.). Analysis of genomic islands and virulence genes highlighted the potential that horizontal gene transfer played as a contributor of variations in pathogenicity in this isolate. Drug-resistance gene prediction and antibiotic susceptibility testing indicated E. hirae R17 was resistant to several antimicrobial compounds, including bacitracin, ciprofloxacin, daptomycin, erythromycin, and tetracycline, thereby limiting chemotherapeutic treatment options. Further, tolerance to biocides and metals may confer a phenotype that facilitates the survival and adaptation of this isolate against food preservatives, disinfectants, and antibacterial coatings. The genomic plasticity, mediated by IS elements, transposases, and tandem repeats, identified in the E. hirae R17 genome may support adaptation to new environmental niches, such as those that are found in hospitalized patients. A predicted transmissible plasmid, pRZ1, was found to carry several antimicrobial determinants, along with some predicted pathogenic genes. These data supported the previously determined phenotype confirming that the foodborne E. hirae R17 is a multidrug-resistant pathogenic bacterium with evident genome plasticity and environmental adaptability.© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.