X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Genome modification in Enterococcus faecalis OG1RF assessed by bisulfite sequencing and Single-Molecule Real-Time Sequencing.

Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged, reducing treatment options for these infections. MDR E. faecalis strains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDR E. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can…

Read More »

Friday, July 19, 2019

Genomic confirmation of vancomycin-resistant Enterococcus transmission from deceased donor to liver transplant recipient.

In a liver transplant recipient with vancomycin-resistant Enterococcus (VRE) surgical site and bloodstream infection, a combination of pulsed-field gel electrophoresis, multilocus sequence typing, and whole genome sequencing identified that donor and recipient VRE isolates were highly similar when compared to time-matched hospital isolates. Comparison of de novo assembled isolate genomes was highly suggestive of transplant transmission rather than hospital-acquired transmission and also identified subtle internal rearrangements between donor and recipient missed by other genomic approaches. Given the improved resolution, whole-genome assembly of pathogen genomes is likely to become an essential tool for investigation of potential organ transplant transmissions.

Read More »

Friday, July 19, 2019

Complete genome sequences of isolates of Enterococcus faecium sequence type 117, a globally disseminated multidrug-resistant clone.

The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. Copyright © 2017 Tedim et al.

Read More »

Sunday, July 7, 2019

micropan: an R-package for microbial pan-genomics.

A pan-genome is defined as the set of all unique gene families found in one or more strains of a prokaryotic species. Due to the extensive within-species diversity in the microbial world, the pan-genome is often many times larger than a single genome. Studies of pan-genomes have become popular due to the easy access to whole-genome sequence data for prokaryotes. A pan-genome study reveals species diversity and gene families that may be of special interest, e.g because of their role in bacterial survival or their ability to discriminate strains.We present an R package for the study of prokaryotic pan-genomes. The…

Read More »

Sunday, July 7, 2019

Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Enterococcus durans KLDS6.0930, a strain with probiotic properties.

Enterococcus durans KLDS6.0930 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. The complete genome sequence of E. durans KLDS6.0930 was carried out using the PacBio RSII platform. The genome contains a circular chromosome and two circular plasmids. Genome sequencing information provides the genetic basis for bioinformatics analysis of bile salt and acid tolerance, cell adhesion, and molecular mechanisms responsible for lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium.

Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63…

Read More »

Sunday, July 7, 2019

Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation.

Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of…

Read More »

Sunday, July 7, 2019

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal…

Read More »

Sunday, July 7, 2019

Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium.

From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the…

Read More »

Sunday, July 7, 2019

Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing.

Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission.A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated…

Read More »

Sunday, July 7, 2019

Characterization of Class IIa bacteriocin resistance in Enterococcus faecium.

Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium’s resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E.…

Read More »

Sunday, July 7, 2019

Whole genome characterization of a naturally occurring vancomycin-dependent Enterococcus faecium from a patient with bacteremia.

Vancomycin-dependent enterococci are a relatively uncommon phenotype recovered in the clinical laboratory. Recognition and recovery of these isolates are important, to provide accurate identification and susceptibility information to treating physicians. Herein, we describe the recovery of a vancomycin-dependent and revertant E. faecium isolates harboring vanB operon from a patient with bacteremia. Using whole genome sequencing, we found a unique single nucleotide polymorphism (S186N) in the D-Ala-D-Ala ligase (ddl) conferring vancomycin-dependency. Additionally, we found that a majority of in vitro revertants mutated outside ddl, with some strains harboring mutations in vanS, while others likely containing novel mechanisms of reversion. Copyright ©…

Read More »

Sunday, July 7, 2019

Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale.

Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin-resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™ 9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain-specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding…

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »