Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full…
Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional…
Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates. Copyright © 2014 Elsevier B.V. All rights reserved.
We report here the complete genome sequence of Citrobacter amalonaticus Y19 isolated from an anaerobic digester. PacBio single-molecule real-time (SMRT) sequencing was employed, resulting in a single scaffold of 5.58Mb. The sequence of a mega plasmid of 291Kb size is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes…
The Enterobacter cloacae complex is genetically very diverse. The increasing number of complete genomic sequences of E. cloacae is helping to determine the exact relationship among members of the complex. E. cloacae P101 is an endophyte of switchgrass (Panicum virgatum) and is closely related to other E. cloacae strains isolated from plants. The P101 genome consists of a 5,369,929 bp chromosome. The chromosome has 5,164 protein-coding regions, 100 tRNA sequences, and 8 rRNA operons.
Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries…
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production…
Enterobacter asburiae belongs to the Enterobacter cloacae complex (Ecc), which comprises six heterogenic species. These bacteria can cause nosocomial infections. Moreover, they are well known for antibiotic resistance features based on overproduction of AmpC ß-lactamases. Although Ecc have clinical importance, little is known about their virulence-associated properties, and very few strains from the six species have been sequenced. In this study, the type strain of E. asburiae 1497-78(T) (ATCC 35953) was sequenced. The genome sequence of the type strain of E. asburiae will help us to understand antibiotic resistance and evolution in Ecc. Copyright © 2017. Published by Elsevier Ltd.
Enterobacter sp. strain ODB01, which was isolated from the Changqing oil field, can degrade crude oil efficiently and use crude oil as its sole source of carbon and energy. We report the complete genome sequence of ODB01. The results promote its application in the remediation of petroleum contaminants. Copyright © 2017 Lan et al.
Here we present the complete genome sequence of Enterobacter cloacae 704SK10, a Swiss wastewater isolate encoding an OXA-48 carbapenemase. Assembly resulted in closed sequences of the 4,876,946-bp chromosome, a 111,184-bp IncF plasmid, and an OXA-48-encoding IncL plasmid (63,458 bp) nearly identical to the previously described plasmid pOXA-48. Copyright © 2017 Marti et al.
Enterobacter cloacae strain M12X01451 was isolated from a patient with mild diarrhea. This strain produces a novel subtype of Shiga toxin 1, Stx1e. The Stx1e-converting prophage in strain M12X01451 is stable and can infect other bacteria following induction. Here we report the complete genome sequence and annotation of strain M12X01451.
Previously, we assembled a model bacterial community of maize roots. Here, we report the complete genome sequences of the seven strains composing the community. Copyright © 2017 Niu and Kolter.
The diversity of OXA-48-like carbapenemases is continually expanding. In this study, we describe the dissemination and characteristics of a novel carbapenem-hydrolyzing class D carbapenemase (CHDL) named OXA-436. In total, six OXA-436-producing Enterobacteriaceae isolates including Enterobacter asburiae (n=3), Citrobacter freundii (n=2) and Klebsiella pneumoniae (n=1) were identified in four patients in the period between September 2013 and April 2015. All three species of OXA-436-producing Enterobacteriaceae were found in one patient. The amino acid sequence of OXA-436 showed 90.4-92.8% identity to other acquired OXA-48-like variants. Expression of OXA-436 in Escherichia coli and kinetic analysis of purified OXA-436 revealed an activity profile similar…
Enterobacter sp. SA187 is an endophytic bacterium that has been isolated from root nodules of the indigenous desert plant Indigofera argentea. SA187 could survive in the rhizosphere as well as in association with different plant species, and was able to provide abiotic stress tolerance to Arabidopsis thaliana. The genome sequence of SA187 was obtained by using Pacific BioScience (PacBio) single-molecule sequencing technology, with average coverage of 275X. The genome of SA187 consists of one single 4,429,597 bp chromosome, with an average 56% GC content and 4,347 predicted protein coding DNA sequences (CDS), 153 ncRNA, 7 rRNA, and 84 tRNA. Functional…