Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16?kilobases) reads with random errors, we assembled 99% (244?megabases) of the Oropetium genome into…
The fragmented nature of most draft plant genomes has hindered downstream gene discovery, trait mapping for breeding, and other functional genomics applications. There is a pressing need to improve or finish draft plant genome assemblies.Here, we present a chromosome-scale assembly of the black raspberry genome using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated V3 assembly has a contig N50 of 5.1 Mb, representing an ~200-fold improvement over the previous Illumina-based version. Each of the 235 contigs was anchored and oriented into seven chromosomes, correcting several major misassemblies. Black raspberry V3 contains 47…
A report on the 10(th) plant genome meeting entitled ‘Plant genomes and biotechnology: from genes to networks’, held at Cold Spring Harbor Laboratory, 2-5 December, 2015.