Menu
July 7, 2019  |  

Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916.

Bacillus subtilis strains BS49 and BS34A, both derived from a common ancestor, carry one or more copies of Tn916, an extremely common mobile genetic element capable of transfer to and from a broad range of microorganisms. Here, we report the complete genome sequence of BS49 and the draft genome sequence of BS34A, which have repeatedly been used as donors to transfer Tn916, Tn916 derivatives or oriTTn916-containing plasmids to clinically important pathogens. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing.

Base J (ß-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Short communication: Single molecule, real-time sequencing technology revealed species- and strain-specific methylation patterns of 2 Lactobacillus strains.

Pacific Biosciences’ (Menlo Park, CA) single molecule, real-time sequencing technology was reported to have some advantages in generating finished genomes and characterizing the epigenome of bacteria. In the present study, this technology was used to sequence 2 Lactobacillus strains, Lactobacillus casei Zhang and Lactobacillus plantarum P-8. Previously, the former bacterium was sequenced by an Applied Biosystems 3730 DNA analyzer (Grand Island, NY), whereas the latter one was analyzed with Roche 454 (Indianapolis, IN) and Illumina sequencing technologies (San Diego, CA). The results showed that single molecule, real-time sequencing resulted in high-quality, finished genomes for both strains. Interestingly, epigenome analysis indicates the presence of 1 active N(6)-methyladenine methyltransferase in L. casei Zhang, but none in L. plantarum P-8. Our study revealed for the first time a completely different methylation pattern in 2 Lactobacillus strains. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine.

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


July 7, 2019  |  

Complete genome sequence analysis of Bacillus subtilis T30.

The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105. Copyright © 2015 Xu et al.


July 7, 2019  |  

Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.

‘Candidatus Liberibacter solanacearum’ contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci were screened against a panel of ‘Ca. L. solanacearum’-positive samples to investigate genetic diversity. Seven of the assays demonstrated within-haplotype diversity; five failed to amplify loci in at least one haplotype A sample while three assays produced amplicons from some haplotype B samples. Eight of the loci assays showed consistent A-B differentiation. Differences in genome arrangements, prophage, and qPCR results suggesting locus diversity within the haplotypes provide more evidence for genetic complexity in this emerging bacterial species.


July 7, 2019  |  

Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12.

We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.


July 7, 2019  |  

It’s more than stamp collecting: how genome sequencing can unify biological research.

The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to ‘big science’ survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9.

The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack.Bacteria were recently found to have a form of adaptive immunity, the CRISPR-Cas systems, which use nucleic acid pairing to recognize and cleave genomic DNA of invaders such as bacteriophage. Historic work with tailed phages has shown that phage DNA is often modified by covalent attachment of large chemical groups. Here we demonstrate that DNA modification in phage T4 inhibits attack by the CRISPR-Cas9 system. This finding provides insight into mechanisms of host-virus competition and also a new set of tools that may be useful in modulating the activity of CRISPR-Cas9 in genome engineering applications. Copyright © 2015 Bryson et al.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica subsp. enterica serovar Agona 460004 2-1, associated with a multistate outbreak in the United States.

Within the last several years, Salmonella enterica subsp. enterica serovar Agona has been among the 20 most frequently isolated serovars in clinical cases of salmonellosis. In this report, the complete genome sequence of S. Agona strain 460004 2-1 isolated from unsweetened puffed-rice cereal during a multistate outbreak in 2008 was sequenced using single-molecule real-time DNA sequencing. Copyright © 2015 Hoffmann et al.


July 7, 2019  |  

Draft genome sequence of a natural root isolate, Bacillus subtilis UD1022, a potential plant growth-promoting biocontrol agent.

Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. Copyright © 2015 Bishnoi et al.


July 7, 2019  |  

Complete genome sequence of Mycoplasma synoviae strain WVU 1853T.

A hybrid sequence assembly of the complete Mycoplasma synoviae type strain WVU 1853T genome was compared to that of strain MS53. The findings support prior conclusions about M. synoviae, based on the genome of that otherwise uncharacterized field strain, and provide the first evidence of epigenetic modifications in M. synoviae.


July 7, 2019  |  

Azotobacter genomes: The genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412).

The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.