June 1, 2021  |  

Genome sequencing of microbial genomes using Single Molecule Real-time sequencing (SMRT) technology.

In the last year, high-throughput sequencing technologies have progressed from proof-of-concept to production quality. Although each technology is able to produce vast quantities of sequence information, in every case the underlying chemistry limits reads to very short lengths. We present a examining de novo assembly comparison with bacterial genome assembly varying genome size (from 3.1Mb to 7.6Mb) and different G+C contents (from 43% to 71%), respectively. We analyzed Solexa reads, 454 reads and Pacbio RS reads from Streptomyces sp. (Genome size, 7.6 Mb; G+C content, 71%), Psychrobacter sp. (Genome size, 3.5 Mb; G+C content, 43%), Salinibacterium sp. (Genome size, 3.1 Mb; G+C content, 61%) and Frigoribacterium sp. (Genome size, 3.3 Mb; G+C content, 63%). We assembly each bacterial genome using Celera assembler 7.0 with and without PacBio RS reads. We found out that the assemble result with Pacbio RS reads have less contigs and scaffolds, and better N50 values.

April 21, 2020  |  

Paenibacillus albus sp. nov., a UV radiation-resistant bacterium isolated from soil in Korea.

A novel Gram-stain-positive, motile, white color and endospore-forming bacterium, designated 18JY67-1T, was isolated from soil in Jeju Island, Korea. The strain grow at 15-42 °C (optimum 30 °C) in R2A medium at pH (6.0-9.5) (optimum 7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 18JY67-1T formed a distinct lineage within the family Paenibacillaceae (order Bacillales, class Bacilli), and was closely related to Paenibacillus rhizoryzae (KP675984; 96.9% 16S rRNA gene sequence similarity). The major cellular fatty acids of the strain 18JY67-1T were C16:0 and anteiso-C15:0. The predominant respiratory quinones were MK-7. The major polar lipid was identified as diphosphatidylglycerol. On the basis of phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate 18JY67-1T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus flavus sp. nov. is proposed. The type strain of Paenibacillus flavus is 18JY67-1T (=?KCTC 33959T =?JCM 33184T).

April 21, 2020  |  

Complete Genome Sequence of a Parabacteroides distasonis Strain (CavFT hAR46) Isolated from a Gut Wall-Cavitating Microlesion in a Patient with Severe Crohn’s Disease.

Crohn’s disease (CD) is a chronic inflammatory bowel disease (IBD) of the digestive tract in humans. There is evidence that Parabacteroides distasonis could contribute to IBD. Here, we present the complete genome sequence of a strain designated CavFT-hAR46, which was isolated from a gut intramural cavernous fistulous tract (CavFT) microlesion in a CD patient.Copyright © 2019 Yang et al.

April 21, 2020  |  

Complete Genome Sequence of Kocuria indica CE7, Isolated from Human Skin.

Here, we report the complete genome sequence of Kocuria indica CE7, isolated from human skin. This strain possesses a 2,809-kbp chromosome and a 32-kbp plasmid with 2,507 coding sequences. In particular, the genome contains multiple genes potentially involved in adaptations in pH homeostasis and salt tolerance.Copyright © 2019 Lee et al.

April 21, 2020  |  

First Complete Genome Sequence of Haematobacter massiliensis OT1 (Chromosome and Multiple Plasmids), Isolated from Human Skin.

Haematobacter massiliensis OT1 was isolated from human skin. This strain can catabolize 4-hydroxybenzoate. Here, we present the first complete whole-genome sequence of this species, which has one chromosome (2,467 kbp) and nine plasmids (total of 1,765 kbp). The analysis of the H. massiliensis OT1 genome indicated a potential for autotrophic growth.Copyright © 2019 Lim et al.

April 21, 2020  |  

Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1.

Resistance to carbapenem and aminoglycoside antibiotics is a critical problem in Acinetobacter baumannii, particularly when genes conferring resistance are acquired by multiply or extensively resistant members of successful globally distributed clonal complexes, such as global clone 1 (GC1) . Here, we investigate the evolution of an expanding clade of lineage 1 of the GC1 complex via repeated acquisition of carbapenem- and aminoglycoside-resistance genes. Lineage 1 arose in the late 1970s and the Tn6168/OCL3 clade arose in the late 1990s from an ancestor that had already acquired resistance to third-generation cephalosporins and fluoroquinolones. Between 2000 and 2002, two distinct subclades have emerged, and they are distinguishable via the presence of an integrated phage genome in subclade 1 and AbaR4 (carrying the oxa23 carbapenem-resistance gene in Tn2006) at a specific chromosomal location in subclade 2. Part or all of the original resistance gene cluster in the chromosomally located AbaR3 has been lost from some isolates, but plasmids carrying alternate resistance genes have been gained. In one group in subclade 2, the chromosomally located AbGRI3, carrying the armA aminoglycoside-resistance gene, has been acquired from a GC2 isolate and incorporated via homologous recombination. ISAba1 entered the common ancestor of this clade as part of the cephalosporin-resistance transposon Tn6168 and has dispersed differently in each subclade. Members of subclade 1 share an ISAba1 in one specific position in the chromosome and in subclade 2 two different ISAba1 locations are shared. Further shared ISAba1 locations distinguish further divisions, potentially providing simple markers for epidemiological studies.

April 21, 2020  |  

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.

April 21, 2020  |  

Genome analysis of the rice coral Montipora capitata.

Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.

September 22, 2019  |  

Characterization of the Rosellinia necatrix transcriptome and genes related to pathogenesis by single-molecule mRNA sequencing.

White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world’s most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

September 22, 2019  |  

Construction of a draft reference transcripts of onion (Allium cepa) using long-read sequencing

To obtain intact and full-length RNA transcripts of onion (Allium cepa), long-read sequencing technology was first applied. Total RNAs extracted from four tissues; flowers, leaves, bulbs and roots, of red–purple and yellow-colored onions (A. cepa) were sequenced using long-read sequencing (RSII platform, P4-C2 chemistry). The 99,247 polished high-quality isoforms were produced by sequence correction processes of consensus calling, quality filtering, orientation verification, misread-nucleotide correction and dot-matrix view. The dot-matrix view was subsequently used to remove artificial inverted repeats (IRs), and resultantly 421 IRs were removed. The remaining 98,826 isoforms were condensed to 35,505 through the removal process of redundant isoforms. To assess the completeness of the 35,505 isoforms, the ratio of full-length isoforms, short-read mapping to the isoforms, and differentially expressed genes among the four tissues were analyzed along with the gene ontology across the tissues. As a result, the 35,505 isoforms were verified as a collection of isoforms with high completeness, and designated as draft reference transcripts (DRTs, ver 1.0) constructed by long-read sequencing.

September 22, 2019  |  

Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis.

Astragalus membranaceus, also known as Huangqi in China, is one of the most widely used medicinal herbs in Traditional Chinese Medicine. Traditional Chinese Medicine formulations from Astragalus membranaceus have been used to treat a wide range of illnesses, such as cardiovascular disease, type 2 diabetes, nephritis and cancers. Pharmacological studies have shown that immunomodulating, anti-hyperglycemic, anti-inflammatory, antioxidant and antiviral activities exist in the extract of Astragalus membranaceus. Therefore, characterising the biosynthesis of bioactive compounds in Astragalus membranaceus, such as Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside, is of particular importance for further genetic studies of Astragalus membranaceus. In this study, we reconstructed the Astragalus membranaceus full-length transcriptomes from leaf and root tissues using PacBio Iso-Seq long reads. We identified 27 975 and 22 343 full-length unique transcript models in each tissue respectively. Compared with previous studies that used short read sequencing, our reconstructed transcripts are longer, and are more likely to be full-length and include numerous transcript variants. Moreover, we also re-characterised and identified potential transcript variants of genes involved in Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside biosynthesis. In conclusion, our study provides a practical pipeline to characterise the full-length transcriptome for species without a reference genome and a useful genomic resource for exploring the biosynthesis of active compounds in Astragalus membranaceus.

September 22, 2019  |  

The complete chloroplast genome of Chrysanthemum boreale (Asteraceae)

Chrysanthemum boreale is a perennial plant in the Asteraceae family that is native to eastern Asia and has both ornamental and herbal uses. Here, we determined the complete chloroplast genome sequence for C. boreale using long-read sequencing. The chloroplast genome was 151,012?bp and consisted of a large single copy (LSC) region (82,817?bp), a small single copy (SSC) region (18,281?bp) and two inverted repeats (IRs) (24,957?bp). It was predicted to contain 131 genes, including 87 protein-coding genes, eight rRNAs and 46 tRNAs. Phylogenetic analysis of chloroplast genomes clustered C. boreale with other Chrysanthemum and Asteraceae species.

September 22, 2019  |  

Genome alterations associated with improved transformation efficiency in Lactobacillus reuteri.

Lactic acid bacteria (LAB) are one of the microorganisms of choice for the development of protein delivery systems for therapeutic purposes. Although there are numerous tools to facilitate genome engineering of lactobacilli; transformation efficiency still limits the ability to engineer their genomes. While genetically manipulating Lactobacillus reuteri ATCC PTA 6475 (LR 6475), we noticed that after an initial transformation, several LR 6475 strains significantly improved their ability to take up plasmid DNA via electroporation. Our goal was to understand the molecular basis for how these strains acquired the ability to increase transformation efficiency.Strains generated after transformation of plasmids pJP067 and pJP042 increased their ability to transform plasmid DNA about one million fold for pJP067, 100-fold for pSIP411 and tenfold for pNZ8048. Upon sequencing of the whole genome from these strains, we identified several genomic mutations and rearrangements, with all strains containing mutations in the transformation related gene A (trgA). To evaluate the role of trgA in transformation of DNA, we generated a trgA null that improved the transformation efficiency of LR 6475 to transform pSIP411 and pJP067 by at least 100-fold, demonstrating that trgA significantly impairs the ability of LR 6475 to take-up plasmid DNA. We also identified genomic rearrangements located in and around two prophages inserted in the LR 6475 genome that included deletions, insertions and an inversion of 336 Kb. A second group of rearrangements was observed in a Type I restriction modification system, in which the specificity subunits underwent several rearrangements in the target recognition domain. Despite the magnitude of these rearrangements in the prophage genomes and restriction modification systems, none of these genomic changes impacted transformation efficiency to the level induced by trgA.Our findings demonstrate how genetic manipulation of LR 6475 with plasmid DNA leads to genomic changes that improve their ability to transform plasmid DNA; highlighting trgA as the primary driver of this phenotype. Additionally, this study also underlines the importance of characterizing genetic changes that take place after genome engineering of strains for therapeutic purposes.

September 21, 2019  |  

Toward complete bacterial genome sequencing through the combined use of multiple next-generation sequencing platforms.

PacBio’s long-read sequencing technologies can be successfully used for a complete bacterial genome assembly using recently developed non-hybrid assemblers in the absence of secondgeneration, high-quality short reads. However, standardized procedures that take into account multiple pre-existing second-generation sequencing platforms are scarce. In addition to Illumina HiSeq and Ion Torrent PGM-based genome sequencing results derived from previous studies, we generated further sequencing data, including from the PacBio RS II platform, and applied various bioinformatics tools to obtain complete genome assemblies for five bacterial strains. Our approach revealed that the hierarchical genome assembly process (HGAP) non-hybrid assembler resulted in nearly complete assemblies at a moderate coverage of ~75x, but that different versions produced non-compatible results requiring post processing. The other two platforms further improved the PacBio assembly through scaffolding and a final error correction.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.