X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 12, 2020

Case Study: Pioneering a pan-genome reference collection

At DuPont Pioneer, DNA sequencing is paramount for R&D to reveal the genetic basis for traits of interest in commercial crops such as maize, soybean, sorghum, sunflower, alfalfa, canola, wheat, rice, and others. They cannot afford to wait the years it has historically taken for high-quality reference genomes to be produced. Nor can they rely on a single reference to represent the genetic diversity in its germplasm.

Read More »

Sunday, October 25, 2020

Podcast: The 9 billion people problem – Rod Wing on plant genomics

By 2050, there will be 9 billion people on the planet. What will they eat? This is the question that led Rod Wing, Director of the Arizona Genomics Institute, into the field of plant genomics. What has been accomplished so far in the mission to come up with some super green crops? And how does Rod see anti-GMO sentiment and the recent trend toward gluten free diets factoring in? After answering these questions, he dives into a discussion on which sequencing instruments he has used for plant work. Unsurprisingly, Rod prefers the PacBio long reads even though the cost is…

Read More »

Sunday, October 25, 2020

PAG Conference: Sequencing and assembly of the rice variety N22 (aus group) – A new reference genome to study comparative, evolutionary and functional genomics of rice

David Kudrna, Rod Wing, and the Arizona Genomics Institute (AGI) plan to fully sequence and annotate the genomes and transcriptomes of 3-4 accessions from each of the estimated 9-15 subpopulation of rice. These subpopulation-specific references will be used to map resequencing data of 3,000 individuals for variation discovery, GWAS, and genomic selection studies to address important traits such as biotic and abiotic stress tolerances, yield, and grain quality. Here Dr. Kudrna presents the first high-quality genome sequence of the rice variety Nagina22. AGI produced and assembled 65-fold coverage of SMRT Sequencing data, resulting in an assembly of 373 Mb with…

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: A-maize-ing time for plant science – SMRT Sequencing of the maize genome and transcriptome

Doreen Ware introduces her team’s new assembly of maize, built with PacBio long-read sequencing and genome maps from BioNano Genomics. With a contig N50 of nearly 10 Mb and more complete information than any previous assembly, Ware says, “This is just an amazing time to be a plant scientist.” Her presentation includes a number of highlights from the new assembly, which may help crop improvement efforts for maize.

Read More »

Sunday, October 25, 2020

Video: Get ready for super coffee strains. Scientists just sequenced the plant’s DNA

Genes are the future of coffee. Not nitro cold brewing or beans pooped out by civets, but genes. And coffee’s gene-fueled future just drew nearer, now that scientists have sequenced the genome of the Coffea arabica coffee plant—the species that makes up the vast majority of global production—and made the data public. That means the world is in for a coffee renaissance, as breeders use the information to develop new plant varieties—think new flavors and better resistance to cold and disease. That means more coffee grown in more places, a big deal as global warming throws local climates into chaos.

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: Introducing 5 new high-quality PacBio genome assemblies for rice to help solve the 10-billion people question

At PAG 2017, Rod Wing presented five new, high-quality rice genome assemblies developed with SMRT Sequencing, including one that has eight complete chromosomes including centromeres. He also offered an early look at data generated with the Sequel System for a new assembly underway. This work is done with the goal of developing rice varieties that will be better suited to feeding a rapidly growing global population.

Read More »

Tuesday, April 21, 2020

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently…

Read More »

Tuesday, April 21, 2020

The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae.

Watercress (Nasturtium officinale R. Br.), an aquatic leafy vegetable of the Brassicaceae family, is known as a nutritional powerhouse. Here, we de novo sequenced and assembled the complete chloroplast (cp) genome of watercress based on combined PacBio and Illumina data. The cp genome is 155,106?bp in length, exhibiting a typical quadripartite structure including a pair of inverted repeats (IRA and IRB) of 26,505?bp separated by a large single copy (LSC) region of 84,265?bp and a small single copy (SSC) region of 17,831?bp. The genome contained 113 unique genes, including 79 protein-coding genes, 30 tRNAs and 4 rRNAs, with 20 duplicate…

Read More »

Wednesday, February 26, 2020

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further…

Read More »

Wednesday, February 26, 2020

Long read sequencing technology to solve complex genomic regions assembly in plants

Numerous whole genome sequencing projects already achieved or ongoing have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been done regarding sequencing technologies, accurate and reliable data are still challenging, at the whole genome scale but also when targeting specific genomic regions. These issues are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various…

Read More »

Wednesday, February 26, 2020

Reconstruction of the spinach coding genome using full-length transcriptome without a reference genome

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from PacBio to sequence transcriptomes (the Iso-Seq method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of the…

Read More »

Wednesday, February 26, 2020

Characterizing the pan-genome of maize with PacBio SMRT Sequencing

Maize is an amazingly diverse crop. A study in 20051 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide…

Read More »

1 2 3 9

Subscribe for blog updates:

Archives