X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based…

Read More »

Tuesday, April 21, 2020

Mogamulizumab Treatment Elicits Autoantibodies Attacking the Skin in Patients with Adult T-Cell Leukemia-Lymphoma.

Purpose: The anti-CCR4 mAb, mogamulizumab, offers therapeutic benefit to patients with adult T-cell leukemia-lymphoma (ATL), but skin-related adverse events (AE) such as erythema multiforme occur frequently. The purpose of this study was to determine the mechanisms by which mogamulizumab causes skin-related AEs in patients with ATL.Experimental Design: We investigated whether autoantibodies were present in patients’ sera using flow cytometry to determine binding to keratinocytes and melanocytes (n = 17), and immunofluorescence analysis of tissue sections. We analyzed the IgM heavy chain repertoire in peripheral blood mononuclear cells before and after mogamulizumab or other chemotherapy by next-generation sequencing (NGS; n =…

Read More »

Tuesday, April 21, 2020

CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat.

To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1).We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n?=?11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis.CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing…

Read More »

Tuesday, April 21, 2020

Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2.

Increasing evidence indicates that broadly neutralizing antibodies (bNAbs) play an important role in immune-mediated control of hepatitis C virus (HCV) infection, but the relative contribution of neutralizing antibodies targeting antigenic sites across the HCV envelope (E1 and E2) proteins is unclear. Here, we isolated thirteen E1E2-specific monoclonal antibodies (MAbs) from B cells of a single HCV-infected individual who cleared one genotype 1a infection and then became persistently infected with a second genotype 1a strain. These MAbs bound six distinct discontinuous antigenic sites on the E1 protein, the E2 protein, or the E1E2 heterodimer. Three antigenic sites, designated AS108, AS112 (an…

Read More »

Tuesday, April 21, 2020

Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity.

Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally “pure” stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions…

Read More »

Tuesday, April 21, 2020

A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection.

HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19?years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of…

Read More »

Tuesday, April 21, 2020

Full-Length Multi-Barcoding: DNA Barcoding from Single Ingredient to Complex Mixtures.

DNA barcoding has been used for decades, although it has mostly been applied to somesingle-species. Traditional Chinese medicine (TCM), which is mainly used in the form ofcombination-one type of the multi-species, identification is crucial for clinical usage.Next-generation Sequencing (NGS) has been used to address this authentication issue for the pastfew years, but conventional NGS technology is hampered in application due to its short sequencingreads and systematic errors. Here, a novel method, Full-length multi-barcoding (FLMB) vialong-read sequencing, is employed for the identification of biological compositions in herbalcompound formulas in adequate and well controlled studies. By directly sequencing the full-lengthamplicons of ITS2…

Read More »

Tuesday, April 21, 2020

Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch).

The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world’s most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus.The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity,…

Read More »

Tuesday, April 21, 2020

A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer.

Colorectal cancer remains a leading source of cancer mortality worldwide. Initial response is often followed by emergent resistance that is poorly responsive to targeted therapies, reflecting currently undruggable cancer drivers such as KRAS and overall genomic complexity. Here, we report a novel approach to developing a personalized therapy for a patient with treatment-resistant metastatic KRAS-mutant colorectal cancer. An extensive genomic analysis of the tumor’s genomic landscape identified nine key drivers. A transgenic model that altered orthologs of these nine genes in the Drosophila hindgut was developed; a robotics-based screen using this platform identified trametinib plus zoledronate as a candidate treatment…

Read More »

Tuesday, April 21, 2020

A new full-length circular DNA sequencing method for viral-sized genomes reveals that RNAi transgenic plants provoke a shift in geminivirus populations in the field.

We present a new method, CIDER-Seq (Circular DNA Enrichment sequencing) for the unbiased enrichment and long-read sequencing of viral-sized circular DNA molecules. We used CIDER-Seq to produce single-read full-length virus genomes for the first time. CIDER-Seq combines PCR-free virus enrichment with Single Molecule Real Time sequencing and a new sequence de-concatenation algorithm. We apply our technique to produce >1200 full-length, highly accurate geminivirus genomes from RNAi-transgenic and control plants in a field trial in Kenya. Using CIDER-Seq we can demonstrate for the first time that the expression of antiviral double-stranded RNA (dsRNA) in transgenic plants causes a consistent shift in…

Read More »

Tuesday, April 21, 2020

Full-length 16S rRNA gene classification of Atlantic salmon bacteria and effects of using different 16S variable regions on community structure analysis.

Understanding fish-microbial relationships may be of great value for fish producers as fish growth, development and welfare are influenced by the microbial community associated with the rearing systems and fish surfaces. Accurate methods to generate and analyze these microbial communities would be an important tool to help improve understanding of microbial effects in the industry. In this study, we performed taxonomic classification and determination of operational taxonomic units on Atlantic salmon microbiota by taking advantage of full-length 16S rRNA gene sequences. Skin mucus was dominated by the genera Flavobacterium and Psychrobacter. Intestinal samples were dominated by the genera Carnobacterium, Aeromonas,…

Read More »

Tuesday, April 21, 2020

Long-read amplicon denoising.

Long-read next-generation amplicon sequencing shows promise for studying complete genes or genomes from complex and diverse populations. Current long-read sequencing technologies have challenging error profiles, hindering data processing and incorporation into downstream analyses. Here we consider the problem of how to reconstruct, free of sequencing error, the true sequence variants and their associated frequencies from PacBio reads. Called ‘amplicon denoising’, this problem has been extensively studied for short-read sequencing technologies, but current solutions do not always successfully generalize to long reads with high indel error rates. We introduce two methods: one that runs nearly instantly and is very accurate for…

Read More »

Tuesday, April 21, 2020

High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution.

Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members…

Read More »

Tuesday, April 21, 2020

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3.

To date, clinical sequencing has focused on genomic DNA using targeted panels and exome sequencing. Sequencing of a large hypertrophic cardiomyopathy (HCM) cohort revealed that positive identification of a disease-associated variant was returned in only 32% of patients, with an additional 15% receiving inconclusive results. When genome sequencing fails to reveal causative variants, the transcriptome may provide additional diagnostic clarity. A recent study examining patients with genetically undiagnosed muscle disorders found that RNA sequencing, when used as a complement to exome and whole genome sequencing, had an overall diagnosis rate of 35%.

Read More »

Tuesday, April 21, 2020

Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections.

Antigenic variation is employed by many pathogens to evade the host immune response, and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involving sequential use of variant surface glycoprotein (VSG) genes encoded from a large repertoire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a population at any one time, and the ability to resolve and analyse this diversity has been limited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection with T. brucei…

Read More »

1 2 3 4 5 6 26

Subscribe for blog updates:

Archives