July 7, 2019  |  

Comparative genomics of all three Campylobacter sputorum biovars and a novel cattle-associated C. sputorum clade.

Campylobacter sputorum is a non-thermotolerant campylobacter that is primarily isolated from food animals such as cattle and sheep. C. sputorum is also infrequently associated with human illness. Based on catalase and urease activity, three biovars are currently recognized within C. sputorum: bv. sputorum (catalase negative, urease negative), bv. fecalis (catalase positive, urease negative), and bv. paraureolyticus (catalase negative, urease positive). A multi-locus sequence typing (MLST) method was recently constructed for C. sputorum. MLST typing of several cattle-associated C. sputorum isolates suggested that they are members of a divergent C. sputorum clade. Although catalase positive, and thus technically bv. fecalis, the taxonomic position of these strains could not be determined solely by MLST. To further characterize C. sputorum, the genomes of four strains, representing all three biovars and the divergent clade, were sequenced to completion. Here we present a comparative genomic analysis of the four C. sputorum genomes. This analysis indicates that the three biovars and the cattle-associated strains are highly-related at the genome level with similarities in gene content. Furthermore, the four genomes are strongly syntenic with one or two minor inversions. However, substantial differences in gene content were observed among the three biovars. Finally, although the strain representing the cattle-associated isolates was shown to be C. sputorum, it is possible that this strain is a member of a novel C. sputorum subspecies; thus, these cattle-associated strains may form a second taxon within C. sputorum. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Complete genome sequence of the Campylobacter cuniculorum type strain LMG 24588.

Campylobacter cuniculorum is a thermotolerant species isolated from farmed rabbits (Oryctolagus cuniculus). Although C. cuniculorum is highly prevalent in rabbits farmed for human consumption, the pathogenicity of this organism in humans is still unknown. This study describes the whole-genome sequence of the C. cuniculorum type strain LMG 24588 (=CCUG 56289(T)). Copyright © 2017 Miller et al.


July 7, 2019  |  

Comparative genomic analysis identifies a Campylobacter clade deficient in selenium metabolism.

The nonthermotolerant Campylobacter species C. fetus, C. hyointestinalis, C. iguaniorum, and C. lanienae form a distinct phylogenetic cluster within the genus. These species are primarily isolated from foraging (swine) or grazing (e.g., cattle, sheep) animals and cause sporadic and infrequent human illness. Previous typing studies identified three putative novel C. lanienae-related taxa, based on either MLST or atpA sequence data. To further characterize these putative novel taxa and the C. fetus group as a whole, 76 genomes were sequenced, either to completion or to draft level. These genomes represent 26 C. lanienae strains and 50 strains of the three novel taxa. C. fetus, C. hyointestinalis and C. iguaniorum genomes were previously sequenced to completion; therefore, a comparative genomic analysis across the entire C. fetus group was conducted (including average nucleotide identity analysis) that supports the initial identification of these three novel Campylobacter species. Furthermore, C. lanienae and the three putative novel species form a discrete clade within the C. fetus group, which we have termed the C. lanienae clade. This clade is distinguished from other members of the C. fetus group by a reduced genome size and distinct CRISPR/Cas systems. Moreover, there are two signature characteristics of the C. lanienae clade. C. lanienae clade genomes carry four to ten unlinked and similar, but nonidentical, flagellin genes. Additionally, all 76 C. lanienae clade genomes sequenced demonstrate a complete absence of genes related to selenium metabolism, including genes encoding the selenocysteine insertion machinery, selenoproteins, and the selenocysteinyl tRNA. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Complete genome sequence of Campylobacter jejuni RM1246-ERRC, which exhibits resistance to quaternary ammonium compounds.

Campylobacter jejuni strain RM1246-ERRC is a clinical isolate. In laboratory experiments, RM1246-ERRC exhibited greater resistance to the antimicrobial effects of quaternary ammonium compounds than other C. jejuni strains. The chromosome of RM1246-ERRC is 1,659,694 bp with a G+C content of 30.56%. The strain also possesses a 45,197-bp plasmid.


July 7, 2019  |  

Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni.

Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM(+) (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria.


July 7, 2019  |  

Complete genome sequence of the hippuricase-positive Campylobacter avium type strain LMG 24591.

Campylobacter avium is a thermotolerant Campylobacter species that has been isolated from poultry. C. avium was also the second hippuricase-positive species to be identified within Campylobacter Here, we present the genome sequence of the C. avium type strain LMG 24591 (=CCUG 56292(T)), isolated in 2006 from a broiler chicken in Italy. Copyright © 2017 Miller et al.


July 7, 2019  |  

Integrated genomic and proteomic analyses of high-level chloramphenicol resistance in Campylobacter jejuni.

Campylobacter jejuni is a major zoonotic pathogen, and its resistance to antibiotics is of great concern for public health. However, few studies have investigated the global changes of the entire organism with respect to antibiotic resistance. Here, we provide mechanistic insights into high-level resistance to chloramphenicol in C. jejuni, using integrated genomic and proteomic analyses. We identified 27 single nucleotide polymorphisms (SNPs) as well as an efflux pump cmeB mutation that conferred modest resistance. We determined two radical S-adenosylmethionine (SAM) enzymes, one each from an SNP gene and a differentially expressed protein. Validation of major metabolic pathways demonstrated alterations in oxidative phosphorylation and ABC transporters, suggesting energy accumulation and increase in methionine import. Collectively, our data revealed a novel rRNA methylation mechanism by a radical SAM superfamily enzyme, indicating that two resistance mechanisms existed in Campylobacter. This work provided a systems biology perspective on understanding the antibiotic resistance mechanisms in bacteria.


July 7, 2019  |  

Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids.

The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains.


July 7, 2019  |  

Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid.

Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%. Copyright © 2016 Gunther et al.


July 7, 2019  |  

Comparative genomics of Campylobacter fetus from reptiles and mammals reveals divergent evolution in host-associated lineages.

Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C fetus was performed. The genomes of C fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C fetus subspecies, but a clear distinction between mammal- and reptile-associated C fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C fetus subsp. testudinum strains. Within C fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C fetus Overall, this study shows that reptile-associated C fetus subsp. testudinum is genetically divergent from mammal-associated C fetus subspecies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production.

Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production.In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S from L-cysteine. Phylogenetic reconstruction of the core genome single nucleotide polymorphisms (SNPs) within Cff and Cfv strains divided these strains into five different clades and showed that the Cfv clade and a Cff clade evolved from a single Cff ancestor.Multiple C. fetus clades were observed, which were not consistent with the biochemical differentiation of the strains. This suggests the need for a closer evaluation of the current C. fetus subspecies differentiation, considering that the phenotypic differentiation is still applied in BGC control programs.


July 7, 2019  |  

Comparative genomics of Campylobacter iguaniorum to unravel genetic regions associated with reptilian hosts.

Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Genomic insights into Campylobacter jejuni virulence and population genetics

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.