Menu
April 21, 2020  |  

Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies.

The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique ß-ribbon ‘stalk’ and disulfide bonded ‘knob’ structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3′ end of IGHV1-7 encodes a longer V-region producing an extended F ß-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.


September 22, 2019  |  

Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire.

Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach.We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5-6 and 21-25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals.We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and deletions in CDR2 further diversifies the bovine antibody repertoire. In contrast to previous studies, our data indicate that unusually long CDR3 sequences are not unique to IgM antibodies in cattle. Centrally located cysteine residues in bovine CDR3s provide further evidence that disulfide bond formation is likely of structural importance. We hypothesize that network or cluster-based analyses of expressed antibody repertoires from controlled challenge experiments will help identify novel natural antigen binding solutions to specific pathogens of interest.


July 19, 2019  |  

Large genomic differences between Moraxella bovoculi isolates acquired from the eyes of cattle with infectious bovine keratoconjunctivitis versus the deep nasopharynx of asymptomatic cattle.

Moraxella bovoculi is a recently described bacterium that is associated with infectious bovine keratoconjunctivitis (IBK) or “pinkeye” in cattle. In this study, closed circularized genomes were generated for seven M. bovoculi isolates: three that originated from the eyes of clinical IBK bovine cases and four from the deep nasopharynx of asymptomatic cattle. Isolates that originated from the eyes of IBK cases profoundly differed from those that originated from the nasopharynx of asymptomatic cattle in genome structure, gene content and polymorphism diversity and consequently placed into two distinct phylogenetic groups. These results suggest that there are genetically distinct strains of M. bovoculi that may not associate with IBK.


July 7, 2019  |  

Complete closed genome sequences of a Mannheimia haemolytica serotype A1 leukotoxin deletion mutant and its wild-type parent strain.

Mannheimia haemolytica is a bacterial pathogen that secretes leukotoxin (LktA) which binds to leukocyte membranes via CD18, causing bacterial pneumonia in ruminants. We report the complete closed genome sequences of a leukotoxin mutant and its parent strain that are frequently used in respiratory disease studies. Copyright © 2015 Heaton et al.


July 7, 2019  |  

Comparative genomics and characterization of hybrid Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strains.

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.


July 7, 2019  |  

Bovine NK-lysin: Copy number variation and functional diversification.

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ~30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.


July 7, 2019  |  

Complete closed genome sequences of three Bibersteinia trehalosi nasopharyngeal isolates from cattle with shipping fever.

Bibersteinia trehalosi is a respiratory pathogen affecting cattle and related ruminants worldwide. B. trehalosi is closely related to Mannheimia haemolytica and is often associated with bovine respiratory disease complex (BRDC), a polymicrobial multifactorial disease. We present three complete closed genome sequences of this species generated using an automated assembly pipeline.


July 7, 2019  |  

Inconsistency of phenotypic and genomic characteristics of Campylobacter fetus subspecies requires reevaluation of current diagnostics.

Classifications of the Campylobacter fetus subspecies fetus and venerealis were first described in 1959 and were based on the source of isolation (intestinal versus genital) and the ability of the strains to proliferate in the genital tract of cows. Two phenotypic assays (1% glycine tolerance and H2S production) were described to differentiate the subspecies. Multiple molecular assays have been applied to differentiate the C. fetus subspecies, but none of these tests is consistent with the phenotypic identification methods. In this study, we defined the core genome and accessory genes of C. fetus, which are based on the closed genomes of five C. fetus strains. Phylogenetic analysis of the core genomes of 23 C. fetus strains of the two subspecies showed a division into two clusters. The phylogenetic core genome clusters were not consistent with the phenotypic classifications of the C. fetus subspecies. However, they were consistent with the molecular characteristics of the strains, which were determined by multilocus sequence typing, sap typing, and the presence/absence of insertion sequences and a type I restriction modification system. The similarity of the genome characteristics of three of the phenotypically defined C. fetus subsp. fetus strains to C. fetus subsp. venerealis strains, when considering the core genome and accessory genes, requires a critical evaluation of the clinical relevance of C. fetus subspecies identification by phenotypic assays. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete closed genome sequences of Mannheimia haemolytica serotypes A1 and A6, isolated from cattle.

Mannheimia haemolytica is a respiratory pathogen affecting cattle and related ruminants worldwide. M. haemolytica is commonly associated with bovine respiratory disease complex (BRDC), a polymicrobial multifactorial disease. We present the first two complete closed genome sequences of this species, determined using an automated assembly pipeline requiring no manual finishing.


July 7, 2019  |  

Updated reference genome sequence and annotation of Mycobacterium bovis AF2122/97.

We report here an update to the reference genome sequence of the bovine tuberculosis bacillus Mycobacterium bovis AF2122/97, generated using an integrative multiomics approach. The update includes 42 new coding sequences (CDSs), 14 modified annotations, 26 single-nucleotide polymorphism (SNP) corrections, and disclosure that the RD900 locus, previously described as absent from the genome, is in fact present. Copyright © 2017 Malone et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.