April 21, 2020  |  

Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis.

Pythium guiyangense, an oomycete from a genus of mostly plant pathogens, is an effective biological control agent that has wide potential to manage diverse mosquitoes. However, its mosquito-killing mechanisms are almost unknown. In this study, we observed that P. guiyangense could utilize cuticle penetration and ingestion of mycelia into the digestive system to infect mosquito larvae. To explore pathogenic mechanisms, a high-quality genome sequence with 239 contigs and an N50 contig length of 1,009 kb was generated. The genome assembly is approximately 110 Mb, which is almost twice the size of other sequenced Pythium genomes. Further genome analysis suggests that P. guiyangense may arise from a hybridization of two related but distinct parental species. Phylogenetic analysis demonstrated that P. guiyangense likely evolved from common ancestors shared with plant pathogens. Comparative genome analysis coupled with transcriptome sequencing data suggested that P. guiyangense may employ multiple virulence mechanisms to infect mosquitoes, including secreted proteases and kazal-type protease inhibitors. It also shares intracellular Crinkler (CRN) effectors used by plant pathogenic oomycetes to facilitate the colonization of plant hosts. Our experimental evidence demonstrates that CRN effectors of P. guiyangense can be toxic to insect cells. The infection mechanisms and putative virulence effectors of P. guiyangense uncovered by this study provide the basis to develop improved mosquito control strategies. These data also provide useful knowledge on host adaptation and evolution of the entomopathogenic lifestyle within the oomycete lineage. A deeper understanding of the biology of P. guiyangense effectors might also be useful for management of other important agricultural pests.


April 21, 2020  |  

Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide.

A marine-sediment sample-derived strain Bacillus velezensis SH-B74 has the capacity to produce cyclic lipopeptides (CLPs), and these CLPs secreted by the strain show biological activities against various pests under both in vitro and in planta conditions, such evidence has supported that the strain SH-B74 is a biopesticide. To get a better insight into the mechanisms on the control of the pesticides by the strain, a genome sequencing project has been applied to the genomic DNA of the strain SH-B74. The results show that the strain SH-B74 has a chromosome size of 4,042,190 bp, with a GC content of 46.5%, in addition, the strain contains a 61,634 bp plasmid pSH-B74, with a GC content of 40.8%. Data from bioinformatic analysis reveal that the strain SH-B74 has genes with the capacity to increase environmental adaptation, promote the rhizosphere fitnesses and secrete a spectrum of antibiotics, including nonribosomal peptide synthetases (NRPSs)-derived CLPs bacillopeptin, plipastatin, and surfactin. The presence of CLPs in the bacterial cultures of the strain SH-B74 was confirmed further by LC-MS analysis. Thus, genome sequencing and analyses together with chemical analysis reveal the promising perspectives of the strain SH-B74 that are of spectacular importance to its trait as a plant beneficial microbe to be used in agriculture practices.


July 7, 2019  |  

Genomic sequences of five Helicoverpa armigera nucleopolyhedrovirus genotypes from Spain that differ in their insecticidal properties.

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes. Copyright © 2015 Arrizubieta et al.


July 7, 2019  |  

Discovery of microbial natural products by activation of silent biosynthetic gene clusters.

Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.


July 7, 2019  |  

Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes.

Bacillus thuringiensis is an important microbial biopesticide for controlling agricultural pests by the production of toxic parasporal crystals proteins.Here,we report the finished annotated genome sequence of B. thuringiensis YC-10,which is highly toxic to nematodes.The complete genome sequence consists of a circular chromosome and nine circular plasmids,which the biggest plasmid harbors six parasporal crystals proteins genes consisting of cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and cryB1. The crystals proteins of Cry1Ia and Cry1Aa have high nematicidal activity against Meloidogyne incognita. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Photorhabdus temperata subsp. thracensis 39-8(T), an entomopathogenic bacterium for the improved commercial bioinsecticide.

Photorhabdus temperata subsp. thracensis 39-8(T), a symbiotic bacterium from an entomopathogenic nematode Heterorhabditis bacteriophora, is a novel bacterium harboring insect pathogenicity. Herein, we present the complete genome sequence of strain 39-8(T), which consists of one circular chromosome of 5,147,098bp with a GC content of 44.10%. This genetic information will provide insights into biotechnological applications of the genus Photorhabdus producing insecticidal toxins, leading to the enhanced commercial bioinsecticide in agricultural pest control. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome of Cnaphalocrocis medinalis granulovirus, the first Crambidae-infecting betabaculovirus isolated from rice leaffolder to sequenced.

Cnaphalocrocis medinalis is a major pest of rice in South and South-East Asia. Insecticides are the major means farmers use for management. A naturally occurring baculovirus, C. medinalis granulovirus (CnmeGV), has been isolated from the larvae and this has the potential for use as microbial agent. Here, we described the complete genome sequence of CnmeGV and compared it to other baculovirus genomes. The genome of CnmeGV is 112,060 base pairs in length, has a G+C content of 35.2%. It contains 133 putative open reading frames (ORFs) of at least 150 nucleotides. A hundred and one (101) of these ORFs are homologous to other baculovirus genes including 37 baculovirus core genes. Thirty-two (32) ORFs are unique to CnmeGV with no homologues detected in the GeneBank and 53 tandem repeats (TRs) with sequence length from 25 to 551 nt intersperse throughout the genome of CnmeGV. Six (6) homologous regions (hrs) were identified interspersed throughout the genome. Hr2 contains 11 imperfect palindromes and a high content of AT sequence (about 73%). The unique ORF28 contains a coiled-coil region and a zinc finger-like domain of 4-50 residues specialized by two C2C2 zinc finger motifs that putatively bound two atoms of zinc. ORF21 encoding a chit-1 protein suggesting a horizontal gene transfer from alphabaculovirus. The putative protein presents two carbohydrate-binding module family 14 (CBM_14) domains rather than other homologues detected from betabaculovirus that only contains one chit-binding region. Gene synteny maps showed the colinearity of sequenced betabaculovirus. Phylogenetic analysis indicated that CnmeGV grouped in the betabaculovirus, with a close relation to AdorGV. The cladogram obtained in this work grouped the 17 complete GV genomes in one monophyletic clade. CnmeGV represents a new crambidae host-isolated virus species from the genus Betabaculovirus and is most closely relative of AdorGV. The analyses and information derived from this study will provide a better understanding of the pathological symptoms caused by this virus and its potential use as a microbial pesticide.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.