Menu
September 22, 2019  |  

Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17?mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60?h under non-sterile conditions in a 7-L bioreactor, reaching 26.3?g/L of dry cell mass containing 60.5% P(3HB-co-17.04?mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13?mol% to 25?mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Genome mining-mediated discovery of a new avermipeptin analogue in Streptomyces actuosus ATCC 25421.

Streptomyces actuosus ATCC 25421 was famous for producing thiopeptide nosiheptide, which has widely been used as a feed additive for the promotion of animal growth. Herein, we report the complete genome sequence of S. actuosus ATCC 25421, which consists of an 8,145,579-bp circular chromosome with a G+C content of 72.53?% containing 7?536 protein-coding genes. The antiSMASH 3.0 program was used to identify 49 biosynthetic gene clusters for putative secondary metabolites, including a putative lantipeptide gene cluster that showed 85?% similarity to the reported informatipeptin biosynthetic gene cluster, indicating that the putative lantipeptide gene cluster has the ability to generate the informatipeptin analogue. Compared with avermipeptin, the lantipeptide precursor peptide (termed avermipeptin B) from S. actuosus ATCC 25421 contains a 14-aa leader peptide and a 24-aa core peptide, in which Ile15 was different from Val15 in avermipeptin. We also deduced the structure and the biosynthetic mechanism of avermipeptin B. Heterologous expression of the avermipeptin B biosynthetic gene cluster in S. lividans TK24 was characterized by high-resolution mass spectrometry (ESI-MS/MS). Finally, we found that avermipeptin B displayed strong activity against Gram-positive strains. The genome sequence reported here can encourage us to mine novel secondary metabolites and investigate their biosynthetic mechanism in the future.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.