Menu
July 19, 2019  |  

Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads.

De novo microbial genome sequencing reached a turning point with third-generation sequencing (TGS) platforms, and several microbial genomes have been improved by TGS long reads. Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and it has a function in the production of the traditional Japanese fermented food “natto.” The B. subtilis natto BEST195 genome was previously sequenced with short reads, but it included some incomplete regions. We resequenced the BEST195 genome using a PacBio RS sequencer, and we successfully obtained a complete genome sequence from one scaffold without any gaps, and we also applied Illumina MiSeq short reads to enhance quality. Compared with the previous BEST195 draft genome and Marburg 168 genome, we found that incomplete regions in the previous genome sequence were attributed to GC-bias and repetitive sequences, and we also identified some novel genes that are found only in the new genome.


July 19, 2019  |  

BREX is a novel phage resistance system widespread in microbial genomes.

The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones. This cassette includes a putative Lon-like protease, an alkaline phosphatase domain protein, a putative RNA-binding protein, a DNA methylase, an ATPase-domain protein, and a protein of unknown function. We denote this novel defense system BREX (Bacteriophage Exclusion) and show that it allows phage adsorption but blocks phage DNA replication. Furthermore, our results suggest that methylation on non-palindromic TAGGAG motifs in the bacterial genome guides self/non-self discrimination and is essential for the defensive function of the BREX system. However, unlike restriction-modification systems, phage DNA does not appear to be cleaved or degraded by BREX, suggesting a novel mechanism of defense. Pan genomic analysis revealed that BREX and BREX-like systems, including the distantly related Pgl system described in Streptomyces coelicolor, are widely distributed in ~10% of all sequenced microbial genomes and can be divided into six coherent subtypes in which the gene composition and order is conserved. Finally, we detected a phage family that evades the BREX defense, implying that anti-BREX mechanisms may have evolved in some phages as part of their arms race with bacteria.© 2014 The Authors.


July 19, 2019  |  

Complete genome sequence of undomesticated Bacillus subtilis strain NCIB 3610.

Bacillus subtilis is a Gram-positive bacterium that serves as an important experimental system. B. subtilis NCIB 3610 is an undomesticated strain that exhibits phenotypes lost from the more common domesticated laboratory strains. Here, we announce the complete genome sequence of DK1042, a genetically competent derivative of NCIB 3610. Copyright © 2017 Nye et al.


July 7, 2019  |  

Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.

Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916.

Bacillus subtilis strains BS49 and BS34A, both derived from a common ancestor, carry one or more copies of Tn916, an extremely common mobile genetic element capable of transfer to and from a broad range of microorganisms. Here, we report the complete genome sequence of BS49 and the draft genome sequence of BS34A, which have repeatedly been used as donors to transfer Tn916, Tn916 derivatives or oriTTn916-containing plasmids to clinically important pathogens. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence analysis of Bacillus subtilis T30.

The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105. Copyright © 2015 Xu et al.


July 7, 2019  |  

Draft genome sequence of a natural root isolate, Bacillus subtilis UD1022, a potential plant growth-promoting biocontrol agent.

Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. Copyright © 2015 Bishnoi et al.


July 7, 2019  |  

Complete genome sequence of the molybdenum-resistant bacterium Bacillus subtilis strain LM 4-2.

Bacillus subtilis LM 4-2, a Gram-positive bacterium was isolated from a molybdenum mine in Luoyang city. Due to its strong resistance to molybdate and potential utilization in bioremediation of molybdate-polluted area, we describe the features of this organism, as well as its complete genome sequence and annotation. The genome was composed of a circular 4,069,266 bp chromosome with average GC content of 43.83 %, which included 4149 predicted ORFs and 116 RNA genes. Additionally, 687 transporter-coding and 116 redox protein-coding genes were identified in the strain LM 4-2 genome.


July 7, 2019  |  

Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis.

Bacillus subtilis contains three subspecies, i.e., subspecies subtilis, spizizenii, and inaquosorum. As these subspecies are phenotypically indistinguishable, their differentiation has relied on phylogenetic analysis of multiple protein-coding gene sequences. B. subtilis subsp. inaquosorum is a recently proposed taxon that encompasses strain KCTC 13429(T) and related strains, which were previously classified as members of subspecies spizizenii. However, DNA-DNA hybridization (DDH) values among the three subspecies raised a question as to their independence. Thus, we evaluated the taxonomic status of subspecies inaquosorum using genome-based comparative analysis. In contrast to the previous experimental values of DDH, the inter-genomic relatedness inferred by average nucleotide identity (ANI) values indicated that subspecies inaquosorum and spizizenii were sufficiently different from subspecies subtilis and hence raised the possibility that the former two could be classified as separate species from B. subtilis. The genome-based tree also supported the separation of the two subspecies from B. subtilis. The exclusive presence of a subtilin synthesis system in subspecies spizizenii was a remarkable genetic characteristic that could even distinguish subspecies spizizenii from subspecies inaquosorum in addition to the low ANI values (<95%). Conclusively, the genome-based data obtained in this study demonstrated that subspecies inaquosorum and spizizenii are clearly distinguished from subspecies subtilis, and raises the possibility that these two subspecies could be classified as separate species from B. subtilis. In addition, the low ANI values between subspecies inaquosorum and spizizenii and the exclusive presence of subtilin synthesis genes in subspecies spizizenii also suggest circumscription of these two subspecies at the species level. Copyright © 2013 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Bacillus subtilis strain PY79.

Bacillus subtilis is a Gram-positive soil-dwelling and endospore-forming bacterium in the phylum Firmicutes. B. subtilis strain PY79 is a prototrophic laboratory strain that has been highly used for studying a wide variety of cellular pathways. Here, we announce the complete whole-genome sequence of B. subtilis PY79.


July 7, 2019  |  

Complete genome sequence of Bacillus subtilis strain 29R7-12, a piezophilic bacterium isolated from coal-bearing sediment 2.4 kilometers below the seafloor.

Here, we report the genome sequence of Bacillus subtilis strain 29R7-12, a piezophilic bacterium isolated from coal-bearing sediment down to ~2.4 km below the ocean floor in the northwestern Pacific. The strain is a Gram-positive spore-forming bacterium, closely related to Bacillus subtilis within the phylum Firmicutes This is the first complete genome sequence of a Bacillus subtilis strain from the deep biosphere. The genome sequence will provide a valuable resource for comparative studies of microorganisms from the surface and subsurface environments. Copyright © 2017 Wei et al.


July 7, 2019  |  

Complete genome sequence of Bacillus subtilis J-5, a potential biocontrol agent.

Bacillus subtilis J-5 was isolated from tomato rhizosphere soil and exhibited strong inhibitory activity against Botrytis cinerea To shed light on the molecular mechanism underlying the biological control on phytopathogens, the whole genome of this strain was sequenced. Genes encoding antimicrobial compounds and the regulatory systems were identified in the genome. Copyright © 2017 Jia et al.


July 7, 2019  |  

Draft genome sequences of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang).

Here, we report the whole-genome sequence of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang). The de novo genome of Bacillus subtilis strain DKU_NT_01 has one contig and G+C content of 55.4%, is 4,954,264 bp in length, and contains 5,011 coding sequences (CDSs). Copyright © 2017 Bang et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.