Menu
July 19, 2019  |  

The composite 259-kb plasmid of Martelella mediterranea DSM 17316(T)-a natural replicon with functional RepABC modules from Rhodobacteraceae and Rhizobiaceae.

A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316(T). PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.


July 7, 2019  |  

Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite.

Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell’s energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.


July 7, 2019  |  

Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598.

Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project.


July 7, 2019  |  

Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565.

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.


July 7, 2019  |  

Genome sequence of the Leisingera aquimarina type strain (DSM 24565(T)), a member of the marine Roseobacter clade rich in extrachromosomal elements.

Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565(T) together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).


July 7, 2019  |  

Genome sequence of Phaeobacter caeruleus type strain (DSM 24564(T)), a surface-associated member of the marine Roseobacter clade.

In 2009 Phaeobacter caeruleus was described as a novel species affiliated with the marine Roseobacter clade, which, in turn, belongs to the class Alphaproteobacteria. The genus Phaeobacter is well known for members that produce various secondary metabolites. Here we report of putative quorum sensing systems, based on the finding of six N-acyl-homoserine lactone synthetases, and show that the blue color of P. caeruleus is probably due to the production of the secondary metabolite indigoidine. Therefore, P. caeruleus might have inhibitory effects on other bacteria. In this study the genome of the type strain DSM 24564(T) was sequenced, annotated and characterized. The 5,344,419 bp long genome with its seven plasmids contains 5,227 protein-coding genes (3,904 with a predicted function) and 108 RNA genes.


July 7, 2019  |  

Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566(T.).

Phaeobacter arcticus Zhang et al. 2008 belongs to the marine Roseobacter clade whose members are phylogenetically and physiologically diverse. In contrast to the type species of this genus, Phaeobacter gallaeciensis, which is well characterized, relatively little is known about the characteristics of P. arcticus. Here, we describe the features of this organism including the annotated high-quality draft genome sequence and highlight some particular traits. The 5,049,232 bp long genome with its 4,828 protein-coding and 81 RNA genes consists of one chromosome and five extrachromosomal elements. Prophage sequences identified via PHAST constitute nearly 5% of the bacterial chromosome and included a potential Mu-like phage as well as a gene-transfer agent (GTA). In addition, the genome of strain DSM 23566(T) encodes all of the genes necessary for assimilatory nitrate reduction. Phylogenetic analysis and intergenomic distances indicate that the classification of the species might need to be reconsidered.


July 7, 2019  |  

Complete genome sequence of bacteriochlorophyll-synthesizing bacterium Porphyrobacter neustonensis DSM 9434.

The genus Porphyrobacter belongs to aerobic anoxygenic phototrophic bacteria cluster. Porphyrobacter neustonensis DSM 9434 was isolated from a eutrophic freshwater pond in Australia, and is able to synthesize Bacteriochlorophyll a as well as grow under aerobic conditions. It is the type species of the genus Porphyrobacter. Here we describe the characteristics of the strain DSM 9434, including the genome sequence and annotation, synthesis of BChl a, and metabolic pathways of the organism. The genome of strain DSM 9434 comprises 3,090,363 bp and contains 2,902 protein-coding genes, 47 tRNA genes and 6 rRNA genes. Strain DSM 9434 encodes 46 genes which participate in BChl a synthesis and this investigation shed light on the evolution and functional implications regarding bacteriochlorophyll synthesis.


July 7, 2019  |  

Complete genome sequence of esterase-producing bacterium Croceicoccus marinus E4A9T.

Croceicoccus marinus E4A9Twas isolated from deep-sea sediment collected from the East Pacific polymetallic nodule area. The strain is able to produce esterase, which is widely used in the food, perfume, cosmetic, chemical, agricultural and pharmaceutical industries. Here we describe the characteristics of strain E4A9, including the genome sequence and annotation, presence of esterases, and metabolic pathways of the organism. The genome of strain E4A9T comprises 4,109,188 bp, with one chromosome (3,001,363 bp) and two large circular plasmids (761,621 bp and 346,204 bp, respectively). Complete genome contains 3653 coding sequences, 48 tRNAs, two operons of 16S-23S-5S rRNA gene and three ncRNAs. Strain E4A9T encodes 10 genes related to esterase, and three of the esterases (E3, E6 and E10) was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form, revealing its potential application in biotechnological industry. Moreover, the genome provides clues of metabolic pathways of strain E4A9T, reflecting its adaptations to the ambient environment. The genome sequence of C. marinus E4A9T now provides the fundamental information for future studies.


July 7, 2019  |  

Genome sequence of Shimia str. SK013, a representative of the Roseobacter group isolated from marine sediment.

Shimia strain SK013 is an aerobic, Gram-negative, rod shaped alphaproteobacterium affiliated with the Roseobacter group within the family Rhodobacteraceae. The strain was isolated from surface sediment (0-1 cm) of the Skagerrak at 114 m below sea level. The 4,049,808 bp genome of Shimia str. SK013 comprises 3,981 protein-coding genes and 47 RNA genes. It contains one chromosome and no extrachromosomal elements. The genome analysis revealed the presence of genes for a dimethylsulfoniopropionate lyase, demethylase and the trimethylamine methyltransferase (mttB) as well as genes for nitrate, nitrite and dimethyl sulfoxide reduction. This indicates that Shimia str. SK013 is able to switch from aerobic to anaerobic metabolism and thus is capable of aerobic and anaerobic sulfur cycling at the seafloor. Among the ability to convert other sulfur compounds it has the genetic capacity to produce climatically active dimethyl sulfide. Growth on glutamate as a sole carbon source results in formation of cell-connecting filaments, a putative phenotypic adaptation of the surface-associated strain to the environmental conditions at the seafloor. Genome analysis revealed the presence of a flagellum (fla1) and a type IV pilus biogenesis, which is speculated to be a prerequisite for biofilm formation. This is also related to genes responsible for signalling such as N-acyl homoserine lactones, as well as quip-genes responsible for quorum quenching and antibiotic biosynthesis. Pairwise similarities of 16S rRNA genes (98.56 % sequence similarity to the next relative S. haliotis) and the in silico DNA-DNA hybridization (21.20 % sequence similarity to S. haliotis) indicated Shimia str. SK013 to be considered as a new species. The genome analysis of Shimia str. SK013 offered first insights into specific physiological and phenotypic adaptation mechanisms of Roseobacter-affiliated bacteria to the benthic environment.


July 7, 2019  |  

Complete genome sequence of thiosulfate-oxidizing Bosea sp. strain PAMC26642 isolated from an Arctic lichen.

Thiosulfate-oxidizing Bosea sp. strain PAMC26642 was isolated from the Arctic lichen Stereocaulon sp. Complete genome sequencing of Bosea sp. PAMC26642 revealed several genes involved in thiosulfate oxidation. An analysis of the Bosea sp. PAMC26642 genome will provide novel insight into the genetic basis of its physiology and enable further analysis of key genes in the thiosulfate oxidation pathway. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

SAR11 bacteria linked to ocean anoxia and nitrogen loss.

Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.


July 7, 2019  |  

Complete genome sequence of Marivivens sp. JLT3646, a potential aromatic compound degrader

Marivivens sp. JLT3646 (CGMCC 1.15778), belonging to the phylum Alphaproteobacteria, was isolated from seawater, Kueishan Islet, offshore northeast of Taiwan. Here, we present the complete genome sequence of Marivivens sp. JLT3646, which contains a circular 2,978,145 bp chromosome with 56.2% G + C content, and one circular plasmid which is 169,066 bp in length. The genome data suggested that Marivivens sp. JLT3646 has the potential to degrade aromatic monomers, which might provide insight into biotechnological applications and facilitate the investigation of environmental bioremediation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.