X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, May 1, 2018

Mapping and characterizing N6-methyladenine in eukaryotic genomes using single molecule real-time sequencing.

N6-methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes, however, methods for high resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes, and provide…

Read More »

Sunday, April 15, 2018

The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae

Brown algae are multicellular photosynthetic organisms belonging to the stramenopile lineage. They are successful colonizers of marine rocky shores world-wide. The genus Ectocarpus, and especially strain Ec32, has been established as a genetic and genomic model for brown algae. A related species, Ectocarpus subulatus Kuetzing, is characterized by its high tolerance of abiotic stress. Here we present the genome and metabolic network of a haploid male strain of E. subulatus, establishing it as a comparative model to study the genomic bases of stress tolerance in Ectocarpus. Our analyses indicate that E. subulatus has separated from Ectocarpus sp. Ec32 via allopatric…

Read More »

Sunday, April 1, 2018

Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta.

Red algae (Rhodophyta) underwent two phases of large-scale genome reduction during their early evolution. The red seaweeds did not attain genome sizes or gene inventories typical of other multicellular eukaryotes. We generated a high quality 92.1 Mbp draft genome assembly from the red seaweed Gracilariopsis chorda, including methylation and small (s)RNA data. We analyzed these and other Archaeplastida genomes to address three questions: 1) what is the role of repeats and transposable elements (TEs) in explaining Rhodophyta genome size variation, 2) what is the history of genome duplication and gene family expansion/reduction in these taxa, and 3) is there evidence…

Read More »

Thursday, March 1, 2018

Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-megabase chloroplast genome.

Haematococcus lacustris is an industrially relevant microalga that is used for the production of the carotenoid astaxanthin. Here, we report the use of PacBio long-read sequencing to assemble the chloroplast genome of H. lacustris strain UTEX:2505. At 1.35?Mb, this is the largest assembled chloroplast of any plant or alga known to date. Copyright © 2018 Bauman et al.

Read More »

Thursday, March 1, 2018

Anisogamy evolved with a reduced sex-determining region in volvocine green algae

Male and female gametes differing in size—anisogamy—emerged independently from isogamous ancestors in various eukaryotic lineages, although genetic bases of this emergence are still unknown. Volvocine green algae are a model lineage for investigating the transition from isogamy to anisogamy. Here we focus on two closely related volvocine genera that bracket this transition—isogamous Yamagishiella and anisogamous Eudorina. We generated de novo nuclear genome assemblies of both sexes of Yamagishiella and Eudorina to identify the dimorphic sex-determining chromosomal region or mating-type locus (MT) from each. In contrast to the large (>1?Mb) and complex MT of oogamous Volvox, Yamagishiella and Eudorina MT are…

Read More »

Friday, December 1, 2017

The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes.

Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted…

Read More »

Thursday, October 26, 2017

Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18.

The halotolerant alga Dunaliella salina is a model for stress tolerance and is used commercially for production of beta-carotene (=pro-vitamin A). The presented draft genome of the genuine strain CCAP19/18 will allow investigations into metabolic processes involved in regulation of stress responses, including carotenogenesis and adaptations to life in high-salinity environments. Copyright © 2017 Polle et al.

Read More »

Tuesday, August 1, 2017

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small…

Read More »

Thursday, June 8, 2017

The plastid genome In Cladophorales green algae is encoded by hairpin plasmids

Chloroplast genomes, relics of an endosymbiotic cyanobacterial genome, are circular double-stranded DNA molecules. They typically range between 100-200 kb and code for circa 80-250 genes. While fragmented mitochondrial genomes evolved several times independently during the evolution of eukaryotes, fragmented plastid genomes are only known in dinoflagellates, where genes are present on several minicircles. Here we show that the chloroplast genome of the green alga Boodlea composita (Cladophorales) is fragmented into hairpin plasmids. Short and long read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genome is fragmented with individual genes encoded on 1-7 kb, GC-rich DNA contigs, each…

Read More »

Monday, May 8, 2017

Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production.

Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene…

Read More »

Thursday, April 20, 2017

Draft nuclear genome sequence of the liquid hydrocarbon–accumulating green microalga Botryococcus braunii race B (Showa).

Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism. Copyright © 2017 Browne et al.

Read More »

Saturday, April 1, 2017

Multiple independent changes in mitochondrial genome conformation in Chlamydomonadalean algae

Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and…

Read More »

Wednesday, March 1, 2017

Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

In 2010, when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and…

Read More »

1 2

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »