X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Novel Workflow Produces Fully Phased Human Genome Assemblies Without Trio Sequencing

Friday, January 3, 2020

A new preprint from lead authors David Porubsky and Peter Ebert, senior authors Evan Eichler and Tobias Marschall (@tobiasmarschal), and collaborators reports a method for generating fully phased, de novo human genome assemblies without parental data. The approach combines PacBio HiFi reads (>99% accuracy, 10-20 kb) with the short-read, single-cell Strand-seq technique.  The authors provide a proof-of-principle through assembling the genome of a Puerto Rican female from the 1000 Genomes Project.

The work extends a recent publication from many of the same authors in which HiFi reads were used to produce an accurate and contiguous assembly of the human haploid genome, CHM13.  To help assemble a phased diploid genome, the newer work adds Strand-seq, “a single-cell sequencing method able to preserve structural contiguity of individual homologs in every single cell.” The authors used Strand-seq to group HiFi reads by chromosome, order and orient contigs, and phase variants over long genomic distances. “Taken together, these features make Strand-seq the method of choice to be combined with high-accuracy long-read sequencing platforms to physically phase and assemble diploid genomes.”

The team generated 33.4-fold HiFi read coverage of the selected sample using the Sequel II System.  They called single nucleotide variants in the HiFi reads with DeepVariant and phased variants using Strand-seq and HiFi reads. That “resulted in chromosome-length haplotypes with >95% … of all these heterozygous variants placed into a single haplotype block,” the scientists report. “With such global and complete haplotypes we assigned ~81% of the original PacBio HiFi reads to either parental haplotype 1 (H1) or haplotype 2 (H2).”

The team then used two tools, Canu and Peregrine, to assemble the haplotype-separated reads. A small number of chimeric contigs were corrected with Strand-seq data and the SaaRclust algorithm. The final contig N50s of the fully phased assemblies were 25.8 Mb and 28.9 for each haplotype. Assemblies were found to be highly accurate, with basepair quality scores higher than QV40; nearly all gene-disrupting indels in the sequence were found to be true biological events, not assembly artifacts.  By titrating HiFi read coverage, the authors found that around 15-fold coverage of each haplotype is sufficient to produce an accurate, contiguous assembly.

“Our assembly strategies allow us to transition from ‘collapsed’ human assemblies of ~3 Gbp to fully phased assemblies of ~6 Gbp where all genetic variants, including [structural variants], are fully phased at the haplotype level,” the scientists report. In addition to the importance of using this method for assembling individual genomes, the authors note, “Fully phased, reference-free genomes are also the first step in constructing comprehensive human pangenome references that aim to reflect the full range of human genome variation.”

Subscribe for blog updates:

Archives