X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Maize Collaborators Embark on Ambitious 26-line Pangenome Project

Wednesday, July 11, 2018

Computational biologist Doreen Ware harvests maize tissue for RNA isolation. Photo by Miriam Chua c/o USDA

The first reference genome for maize variety B73, completed in 2009, was a major milestone, and an improved version released by Cold Spring Harbor Laboratory scientists in 2017 provided a deeper dive into the genetics of the complex crop. Yet even this new robust reference is not enough for Kelly Dawe, Doreen Ware and Matt Hufford, who have taken up another ambitious project: creating a 26-line pangenome reference collection in just two years.

“Maize is not only an important crop, but an important study species for answering basic questions about how plants grow and adapt to different environments,” says Ware, a computational biologist at USDA and Cold Spring Harbor Laboratory.

Interestingly, the genome differs significantly between individuals. A study comparing genome segments associated with kernel color from two inbred lines revealed that 12 percent of the gene content was not shared – that’s much more diversity within the species than between humans and chimpanzees, which exhibit more than 98 percent sequence similarity. The new project will create multiple reference genomes to reflect this diversity.

“By relying on a single type specimen as the sequence reference for most of the genetic information in maize, we may be missing much of the highly valuable natural variation in maize,” Ware says.

Beyond B73, the most extensively researched maize lines are the core set of 25 inbreds known as the NAM founder lines, which represent a broad cross section of modern maize diversity. SMRT Sequencing and BioNano optical mapping, which were essential in the creation of the groundbreaking 2017 B73 maize reference, will be used in the new $2.8 million National Science Foundation-funded project led by Dawe at the University of Georgia. They will create comprehensive, high-quality assemblies of these 25 inbreds, plus an additional line containing abnormal chromosome 10.

Plant genomes are notoriously difficult to sequence, and maize is particularly challenging because the vast majority of its 2.3 Gb diploid genome — a staggering 85 percent — is made up of highly repetitive transposable elements that other types of sequencing can’t address. Understanding these regulatory and structural elements is crucial to modern breeding efforts that aim to improve productivity across marginal environments and under changing climate.

“The sequenced lines will include varieties from both tropical and temperate regions, and their sequences should help us understand how corn has adapted to these different environments,” said Hufford, a co-principal investigator on the project and assistant professor at Iowa State University. “Understanding the ways corn adapts can facilitate development of lines for novel conditions.”

PacBio Sequencing will be essential as the team assesses the role of structural variation such as presence-absence and copy number variation in the determination of agronomic traits, Ware says.

The assemblies, along with information about the genes and their expression patterns, will be cataloged and made available to the public through her Gramene.org data resource.

“To go from a single reference to a broad perspective on the entire genetic repertoire of genes and gene expression patterns will be a major step forward in how we approach genome analysis in crops,” said Dawe, Distinguished Research Professor in UGA’s Franklin College of Arts and Sciences department of genetics and principal investigator on the grant. “It’s something that has not happened for any crop at this scale.”

Read about Doreen Ware’s original comprehensive maize genome project and about efforts at Corteva Agriscience™, Agriculture Division of DowDupont™ (formerly DuPont Pioneer) to create their own multiple maize reference library.

 

Subscribe for blog updates:

Archives