fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

LeafGo: A Workflow That Enables High-Quality Seven-Day Plant Genome Assembly 

Friday, February 12, 2021

 

UPDATE — September 3, 2021: This paper is now published in Genome Biology.

ORIGINAL POST

A team of scientists from KAUST used a new rapid de novo assembly workflow to create genomes of the Eucalyptus species E. camaldulensis

What does the ideal genome assembly look like? High-quality, free of errors, with no gaps, and all haplotypes resolved.

It’s a big ask, especially with challenging genomes like plants that are rich in repetitive content with high levels of heterozygosity and complex polyploidy. Moreover, such assemblies often require a combination of technologies, such as sequencing plus optical mapping.

But a team of scientists at the King Abdullah University of Science and Technology (KAUST) Core Labs (@kaust_corelabs), proved it is possible by using one technology — PacBio HiFi Sequencing — in just seven days.

Their recent preprint introduced LeafGo, a streamlined workflow able to produce a high-quality draft plant genome from plant tissue without using additional scaffolding technologies.

The rapid, one-pass approach was tested on two different Eucalyptus species, E. rudis, and E. camaldulensis.

There are more than 800 eucalypt species, but only three genomes have been published: E. grandis, E. pauciflora and E. camaldulensis. The LeafGo produced high-quality draft E. camaldulensis genome is an improvement upon those highly fragmented genomes, the KAUST team wrote.

Their assembly of E. rudis, a close relative of E. camaldulensis that inhabits a different ecological niche, is the first for that species.

“The two genomes sequenced here will improve our genomic knowledge of eucalypts, which at the moment is relatively sparse, and will assist with conservation issues and commercial uses,” they wrote.

The team tested both continuous long read (CLR) and HiFi circular consensus sequencing (CCS) data, and were especially impressed with the results from HiFi reads — “the higher base-level accuracy given by HiFi improves the assembly considerably, thus removing the need for polishing with short-read sequencing.”

“HiFi assemblies demanded less computational requirements, had higher BUSCO scores, showed several fold improvement of contig N50/N90 and L50/L90, and generated more complete genome assemblies,” the authors wrote.

“In fact, our HiFi sequencing data, assembled with hifiasm, produced near-chromosome level haploid draft genomes,” they added.

“One of the main advantages for our chosen genome assembly workflow, using hifiasm with HiFi reads, are the savings in time and compute requirements, all with minimal manual intervention.”

The estimated total time from raw reads to HiFi data to the assembly of a high-quality contiguous draft for a haploid genome of 0.6 to 1.0 Gb is approximately one day, they wrote. Assembling the HiFi data using hifiasm took 80 minutes for E. rudis (23x coverage) and 120 minutes for E. camaldulensis (27x coverage).

“When combined with time estimates of HMW DNA extraction (one day), HiFi library preparation and sequencing (five days) and assembly; a high-quality draft genome can be prepared from plant samples in seven days, depending on available compute resources,” the authors stated.

The team also created a modified Qiagen Genomic protocol in order to tackle the challenge of extracting high molecular weight DNA from the Eucalyptus species, which is difficult due to their high phenolic and polysaccharide content.

“Our extraction protocol generated high pure and copious amounts of HMW DNA within a day and using minimal resources and effort,” they wrote.

The authors say they hope LeafGo will be a valuable tool for global initiatives to sequence and assemble genomes for many thousands of eukaryotic life forms that do not yet have published standardized workflows.

Genome assembly statistics for two Eucalyptus species
Genome assembly statistics for two Eucalyptus species

Subscribe for blog updates:

Archives