X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

SMRT Sequencing Enables Discovery of Epigenetic Driver of C. diff Persistence

Tuesday, December 17, 2019

How do pernicious pathogens like Clostridioides difficile spread through hospitals and persist so tenaciously in the human gut, leading to about half a million infections and 30,000 deaths each year? 

It’s a mystery scientists have been anxious to solve, and they’ve invested countless hours of research into the bacteria’s physiology, genetics and genomic evolution.  

A team from Mount Sinai School of Medicine in New York City has uncovered an important new clue by studying an overlooked aspect of C. difficile’s biology: Epigenetics. 

Using PacBio SMRT Sequencing and comparative epigenomics, Pedro H. Oliveira (@pholive81), Gang Fang (@iamfanggang), and colleagues mapped and characterized the DNA methylomes of 36 human C. difficile isolates. 

As described in a recent Nature Microbiology paper, while they observed substantial epigenomic diversity across C. difficile isolates, they noticed one methyltransferase (MTase) was highly conserved across all of the isolates (and, they later discovered, in another ~300 published C. difficile genomes). This MTase, which they dubbed camA, shared a common methylation motif — CAAAAA, with the last adenine methylated at the N6 position, namely 6mA

“Despite the small sample size, I got excited wondering if this methylation pattern might be conserved in this critical pathogen and play important roles in regulating its physiology,” Fang wrote in a Behind The Paper feature.

That left the question, how does it work? The Mount Sinai team reached out to other experts in the field, Aimee Shen at Tufts University and Rita Tamayo at the University of North Carolina, to do some in vitro and in vivo studies. 

They found that inactivation of the gene encoding this MTase compromises spore formation, a key step in both the transmission of C. difficile and its ability to persist in the intestinal tract. 

“Further experimental and integrative transcriptomic analysis suggested that epigenetic regulation by DNA methylation also modulates the cell length, host colonization and biofilm formation of C. difficile,” the authors wrote. 

The discovery could have a direct translational impact. The fact that camA is conserved across all of the C. difficile genomes but is present in just a few Clostridiales makes it a promising, highly specific drug target. Furthermore, as the MTase does not seem to impact the general fitness of C. difficile, a drug that specifically targets it might also have a lower chance for resistance.

“These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen,” the authors concluded.

The discovery was made as part of the Mount Sinai Pathogen Surveillance Program, which we previously profiled for its innovative use of genetic sequencing in disease control

The authors noted that such high-resolution mapping of bacterial DNA-methylation events has only recently become possible with the advent of PacBio’s single molecule, real-time sequencing.

“This technique enabled the characterization of the first bacterial methylomes and, since then, more than 2,200 (as of September 2019) have been mapped, heralding a new era of bacterial epigenomics,” they added. 

Learn more about the methods and workflow for direct detection of epigenetics using PacBio sequencing.

 

Subscribe for blog updates:

Archives