July 7, 2019  |  

Genome sequence of the multiantibiotic-resistant Enterococcus faecium strain C68 and insights on the pLRM23 colonization plasmid.

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain. Copyright © 2016 García-Solache and Rice.


July 7, 2019  |  

Complete genome sequence of Enterococcus faecium ATCC 700221.

We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. Copyright © 2016 McKenney et al.


July 7, 2019  |  

Lactobacillus rhamnosus GG outcompetes Enterococcus faecium by mucus-binding pili – Evidence for a novel probiotic mechanism on a distance.

Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.


July 7, 2019  |  

Homologous recombination within large chromosomal regions facilitates acquisition of beta-lactam and vancomycin resistance in Enterococcus faecium.

The transfer of DNA between Enterococcus faecium strains has been characterized by both the movement of well-defined genetic elements and by the large-scale transfer of genomic DNA fragments. In this work we report on the whole genome analysis of transconjugants resulting from mating events between the vancomycin-resistant E. faecium C68 strain and vancomycin susceptible D344RRF to discern the mechanism by which the transferred regions enter the recipient chromosome. Vancomycin-resistant transconjugants from five independent matings were analysed by whole genome sequencing. In all cases but one, the penicillin binding protein 5 gene (pbp5) and the Tn5382-vancomycin resistance transposon were transferred together and replaced the corresponding pbp5 region of D344RRF. In one instance, Tn5382 inserted independently downstream of the D344RRF pbp5 Single nucleotide variants (SNV) analysis suggests that entry of donor DNA into the recipient chromosome occurred by recombination across regions of homology between donor and recipient chromosomes, rather than through insertion sequence-mediated transposition. Transfer of genomic DNA was also associated with transfer of C68 plasmid pLRM23 and another putative plasmid. Our data are consistent with transfer initiated by a cointegration of a transferable plasmid with the donor chromosome, with subsequent circularization of the plasmid/chromosome cointegrate in the donor prior to transfer. Entry into the recipient chromosome occurs most commonly across regions of homology between donor and recipient chromosomes. Copyright © 2016 García-Solache et al.


July 7, 2019  |  

Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium.

Enterococcus faecium is a major nosocomial pathogen causing significant morbidity and mortality worldwide. Assessment of E. faecium using MLST to understand the spread of this organism is an important component of hospital infection control measures. Recent studies, however, suggest that MLST might be inadequate for E. faecium surveillance.To use WGS to characterize recently identified vancomycin-resistant E. faecium (VREfm) isolates non-typeable by MLST that appear to be causing a multi-jurisdictional outbreak in Australia.Illumina NextSeq and Pacific Biosciences SMRT sequencing platforms were used to determine the genome sequences of 66 non-typeable E. faecium (NTEfm) isolates. Phylogenetic and bioinformatics analyses were subsequently performed using a number of in silico tools.Sixty-six E. faecium isolates were identified by WGS from multiple health jurisdictions in Australia that could not be typed by MLST due to a missing pstS allele. SMRT sequencing and complete genome assembly revealed a large chromosomal rearrangement in representative strain DMG1500801, which likely facilitated the deletion of the pstS region. Phylogenomic analysis of this population suggests that deletion of pstS within E. faecium has arisen independently on at least three occasions. Importantly, the majority of these isolates displayed a vancomycin-resistant genotype.We have identified NTEfm isolates that appear to be causing a multi-jurisdictional outbreak in Australia. Identification of these isolates has important implications for MLST-based typing activities designed to monitor the spread of VREfm and provides further evidence supporting the use of WGS for hospital surveillance of E. faecium.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.