July 7, 2019  |  

New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the a-gliadin gene family in Aegilops tauschii, the source of wheat D genome.

Authors: Huo, Naxin and Dong, Lingli and Zhang, Shengli and Wang, Yi and Zhu, Tingting and Mohr, Toni and Altenbach, Susan and Liu, Zhiyong and Dvorak, Jan and Anderson, Olin D and Luo, Ming-Cheng and Wang, Daowen and Gu, Yong Q

Among the wheat prolamins important for its end-use traits, a-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 a-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of a-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated a-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the a-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of a-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

Journal: The Plant journal
DOI: 10.1111/tpj.13675
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.