X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Rajwani, Rahim and Shehzad, Sheeba and Siu, Gilman Kit Hang

Tuberculosis (TB) resulted in an estimated 1.7 million deaths in the year 2016. The disease is caused by the members of Mycobacterium tuberculosis complex, which includes Mycobacterium tuberculosis, Mycobacterium bovis and other closely related TB causing organisms. In order to understand the epidemiological dynamics of TB, national TB control programs often conduct standardized genotyping at 24 Mycobacterial-Interspersed-Repetitive-Units (MIRU)-Variable-Number-of-Tandem-Repeats (VNTR) loci. With the advent of next generation sequencing technology, whole-genome sequencing (WGS) has been widely used for studying TB transmission. However, an open-source software that can connect WGS and MIRU-VNTR typing is currently unavailable, which hinders interlaboratory communication. In this manuscript, we introduce the MIRU-profiler program which could be used for prediction of MIRU-VNTR profile from WGS of M. tuberculosis.The MIRU-profiler is implemented in shell scripting language and depends on EMBOSS software. The in-silico workflow of MIRU-profiler is similar to those described in the laboratory manuals for genotyping M. tuberculosis. Given an input genome sequence, the MIRU-profiler computes alleles at the standard 24-loci based on in-silico PCR amplicon lengths. The final output is a tab-delimited text file detailing the 24-loci MIRU-VNTR pattern of the input sequence.The MIRU-profiler was validated on four datasets: complete genomes from NCBI-GenBank (n = 11), complete genomes for locally isolated strains sequenced using PacBio (n = 4), complete genomes for BCG vaccine strains (n = 2) and draft genomes based on 250 bp paired-end Illumina reads (n = 106).The digital MIRU-VNTR results were identical to the experimental genotyping results for complete genomes of locally isolated strains, BCG vaccine strains and five out of 11 genomes from the NCBI-GenBank. For draft genomes based on short Illumina reads, 21 out of 24 loci were inferred with a high accuracy, while a number of inaccuracies were recorded for three specific loci (ETRA, QUB11b and QUB26). One of the unique features of the MIRU-profiler was its ability to process multiple genomes in a batch. This feature was tested on all complete M. tuberculosis genome (n = 157), for which results were successfully obtained in approximately 14 min.The MIRU-profiler is a rapid tool for inference of digital MIRU-VNTR profile from the assembled genome sequences. The tool can accurately infer repeat numbers at the standard 24 or 21/24 MIRU-VNTR loci from the complete or draft genomes respectively. Thus, the tool is expected to bridge the communication gap between the laboratories using WGS and those using the conventional MIRU-VNTR typing.

Journal: PeerJ
DOI: 10.7717/peerj.5090
Year: 2018

Read Publication

 

Stay
Current

Visit our blog »