April 21, 2020  |  

Dissemination of multiple carbapenem resistance genes in an in vitro gut model simulating the human colon.

Authors: Rooney, C M and Sheppard, A E and Clark, E and Davies, K and Hubbard, A T M and Sebra, R and Crook, D W and Walker, A S and Wilcox, M H and Chilton, C H

Carbapenemase-producing Enterobacteriaceae (CPE) pose a major global health risk. Mobile genetic elements account for much of the increasing CPE burden.To investigate CPE colonization and the impact of antibiotic exposure on subsequent resistance gene dissemination within the gut microbiota using a model to simulate the human colon.Gut models seeded with CPE-negative human faeces [screened with BioMérieux chromID® CARBA-SMART (Carba-Smart), Cepheid Xpert® Carba-R assay (XCR)] were inoculated with distinct carbapenemase-producing Klebsiella pneumoniae strains (KPC, NDM) and challenged with imipenem or piperacillin/tazobactam then meropenem. Resistant populations were enumerated daily on selective agars (Carba-Smart); CPE genes were confirmed by PCR (XCR, Check-Direct CPE Screen for BD MAX™). CPE gene dissemination was tracked using PacBio long-read sequencing.CPE populations increased during inoculation, plateauing at ~105?log10?cfu/mL in both models and persisting throughout the experiments (>65?days), with no evidence of CPE 'washout'. After antibiotic administration, there was evidence of interspecies plasmid transfer of blaKPC-2 (111742?bp IncFII/IncR plasmid, 99% identity to pKpQIL-D2) and blaNDM-1 (~170?kb IncFIB/IncFII plasmid), and CPE populations rose from <0.01% to >45% of the total lactose-fermenting populations in the KPC model. Isolation of a blaNDM-1K. pneumoniae with one chromosomal single-nucleotide variant compared with the inoculated strain indicated clonal expansion within the model. Antibiotic administration exposed a previously undetected K. pneumoniae encoding blaOXA-232 (KPC model).CPE exposure can lead to colonization, clonal expansion and resistance gene transfer within intact human colonic microbiota. Furthermore, under antibiotic selective pressure, new resistant populations emerge, emphasizing the need to control exposure to antimicrobials. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: [email protected]

Journal: The Journal of antimicrobial chemotherapy
DOI: 10.1093/jac/dkz106
Year: 2019

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.