Menu
July 7, 2019  |  

Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon.

Authors: Snesrud, Erik and Ong, Ana C and Corey, Brendan and Kwak, Yoon I and Clifford, Robert and Gleeson, Todd and Wood, Shannon and Whitman, Timothy J and Lesho, Emil P and Hinkle, Mary and McGann, Patrick

The emergence of a transferable colistin resistance gene (mcr-1) is of global concern. The insertion sequence ISApl1 is a key component in the mobilization of this gene, but its role remains poorly understood. Six Escherichia coli isolates were cultured from the same patient over the course of 1 month in Germany and the United States after a brief hospitalization in Bahrain for an unconnected illness. Four carried mcr-1 as determined by real-time PCR, but two were negative. Two additional mcr-1-negative E. coli isolates were collected during follow-up surveillance 9 months later. All isolates were analyzed by whole-genome sequencing (WGS). WGS revealed that the six initial isolates were composed of two distinct strains: an initial ST-617 E. coli strain harboring mcr-1 and a second, unrelated, mcr-1-negative ST-32 E. coli strain that emerged 2 weeks after hospitalization. Follow-up swabs taken 9 months later were negative for the ST-617 strain, but the mcr-1-negative ST-32 strain was still present. mcr-1 was associated with a single copy of ISApl1, located on a 64.5-kb IncI2 plasmid that shared >95% homology with other mcr-1 IncI2 plasmids. ISApl1 copy numbers ranged from 2 for the first isolate to 6 for the final isolate, but ISApl1 movement was independent of mcr-1 Some movement was accompanied by gene disruption, including the loss of genes encoding proteins involved in stress responses, arginine catabolism, and l-arabinose utilization. These data represent the first comprehensive analysis of ISApl1 movement in serial clinical isolates and reveal that, under certain conditions, ISApl1 is a highly active IS element whose movement may be detrimental to the host cell. Copyright © 2017 Snesrud et al.

Journal: Antimicrobial agents and chemotherapy
DOI: 10.1128/AAC.00056-17
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.