fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Author(s): McLaughlin, Ian and Harting, John and Aro, Lori and Heiner, Cheryl

Introduction: There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping is attributable to segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions.

Materials and Methods: Using PacBio highly accurate long-read (HiFi) Sequencing, coupled with a long-PCR targeted enrichment method, we investigated two important dark region genes that are challenging to accurately type with short-read sequencing due to associated pseudogenes: CYP21A2, responsible for congenital adrenal hyperplasia, and GBA, responsible for Gaucher disease. For each gene, our aim was to cover regions of pathogenic mutations in a single contiguous sequence or set of sequences that can be assayed in a single reaction. CYP21A2 and an associated pseudogene CYP21A1P were co-amplified in a single long-range PCR reaction generating a 10.2 kb and 8.9 kb amplicon, respectively. Similarly, GBA and an associated pseudogene GBAP1 were co-amplified in a single long-range PCR reaction generating a 12.6 kb and 16.0 kb amplicon, respectively. Seven Coriell samples for the CYP21A2 target region and 13 Coriell samples for the GBA target region containing known pathogenic mutations were studied in replicate. SMRTbell libraries were generated from pooled amplicons for each target gene and sequenced on a PacBio Sequel II System. Accounting for replicates, each library contained a multiplex of 24 samples. A new PacBio sequence clustering algorithm, pbAA, designed for rapid analysis of HiFi reads from amplicons was used in variant typing.

Results: All pathogenic CYP21A2 and GBA variants were accurately called in the test samples. These variants included whole-gene deletions, gene duplication, gene fusions, and recombinant exons. Additionally, phasing of complex heterozygotes was achieved.

Conclusion: We demonstrate that long-read HiFi Sequencing provides new opportunities for sequencing clinically relevant but previously dark regions of the human genome that are underrepresented in short-read sequencing. Accurate long reads provide important phasing information, identify structural variations, and avoid potential confusion with pseudogenes. SMRT Sequencing of these regions enables a better understanding of the relationship between genetic factors and personal health and has the potential to ultimately help guide health-related decisions.

Organization: PacBio
Year: 2021

View Conference Poster

 

Stay
Current

Visit our blog »