Trimyema compressum thrives in anoxic freshwater environments in which it preys on bacteria and grows with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, T. compressum possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of T. compressum harbours hydrogenotrophic methanogens that consume the hydrogen produced by hydrogenosome, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, T. compressum houses bacterial symbiont TC1 whose function is unknown in its cytoplasm. Recently, we analysed whole-genome sequence of TC1 symbiont to investigate its physiological function in the tripartite symbiosis and found that fatty acid synthesis fab operon of TC1 symbiont lacked typical transcriptional repressor, which is normally coded on the upstream of the fab operon. The sequence data suggested that TC1 symbiont contributes to host Trimyema by the synthesis of fatty acid or its derivative. In this review, we summarize the early works and recent progress of the studies on Trimyema ciliates, including a stably cultivable model protozoa T. compressum, and discuss about symbiotic associations in oxygen-scarce environments.
Journal:
DOI: 10.1007/978-3-319-98836-8_4
Year: 2018