Menu
September 22, 2019  |  

Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease.

Authors: Pettigrew, Melinda M and Ahearn, Christian P and Gent, Janneane F and Kong, Yong and Gallo, Mary C and Munro, James B and D'Mello, Adonis and Sethi, Sanjay and Tettelin, Hervé and Murphy, Timothy F

Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.

Journal: Proceedings of the National Academy of Sciences of the United States of America
DOI: 10.1073/pnas.1719654115
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.