April 21, 2020  |  

Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serovar 5a M90T and genome-wide transcription start site determination

Authors: Cervantes-Rivera, Ramón and Tronnet, Sophie and Puhar, Andrea

Background Shigella is a Gram-negative facultative intracellular bacterium that causes bacillary dysentery in humans. Shigella invades cells of the colonic mucosa owing to its virulence plasmid-encoded Type 3 Secretion System (T3SS), and multiplies in the target cell cytosol. Although the laboratory reference strain S. flexneri serotype 5a M90T has been extensively used to understand the molecular mechanisms of pathogenesis, its complete genome sequence is not available, thereby greatly limiting studies employing high-throughput sequencing and systems biology approaches. Results We have sequenced, assembled, annotated and manually curated the full genome of S. flexneri 5a M90T. This yielded two complete circular contigs, the chromosome and the virulence plasmid (pWR100). To obtain the genome sequence, we have employed long-read PacBio DNA sequencing followed by polishing with Illumina RNA-seq data. This provides a new pipeline to prepare gapless, highly accurate genome sequences. Furthermore, we have performed genome-wide analysis of transcriptional start sites and determined the length of 5’ untranslated regions (5’-UTRs) at typical culture conditions for the inoculum of in vitro infection experiments. We identified 6,723 primary TSS (pTSS) and 7,328 secondary TSS (sTSS). The S. flexneri 5a M90T annotated genome sequence and the transcriptional start sites are integrated into RegulonDB ( and RSAT ( to use its analysis tools in S. flexneri 5a M90T genome. Conclusions We provide the first complete genome for S. flexneri serotype 5a, specifically the laboratory reference strain M90T. Our work opens the possibility of employing S. flexneri M90T in high-quality systems biology studies such as transcriptomic and differential expression analyses or in genome evolution studies. Moreover, the catalogue of TSS that we report here can be used in molecular pathogenesis studies as a resource to know which genes are transcribed before infection of host cells. The genome sequence, together with the analysis of transcriptional start sites, is also a valuable tool for precise genetic manipulation of S. flexneri 5a M90T. The hybrid pipeline that we report here combining genome sequencing with long-reads technology and polishing with RNAseq data defines a powerful strategy for genome assembly, polishing and annotation in any type of organism.

Journal: BioRxiv
DOI: 10.1101/595066
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.