July 7, 2019  |  

A novel Tn1696-like composite transposon (Tn6404) harboring bla IMP-4 in a Klebsiella pneumoniae isolate carrying a rare ESBL gene bla SFO-1.

Authors: Zhou, Kai and Yu, Wei and Shen, Ping and Lu, Haifeng and Wang, Baohong and Rossen, John W A and Xiao, Yonghong

Genetic determinants of a clinical Klebsiella pneumoniae isolate (KP1814) coproducing IMP-4 and a rare ESBL gene SFO-1 was investigated. KP1814 belongs to a novel sequence type (ST) assigned to ST2270. WGS identified four circular DNA sequences in KP1814, including two multidrug-resistance (MDR) plasmids, one virulence plasmid, and one circular form. The MDR plasmid pKP1814-1 (299.9 Kb) is untypeable, and carries two large mosaic multiresistance regions (MRRs). bla SFO-1 and bla IMP-4 co-exists on MRR1, and bla SFO-1 is associated with an IS/Tn-independent genetic context. bla IMP-4 is carried by a novel In804-like integron (intlI-bla IMP-4-Kl.pn.I3-qacG2-aacA4-catB3?) associated with a novel Tn1696-like transposon (designed Tn6404) flanked by IS5075. The other MDR plasmid pKP1814-3 is a 95,701-bp IncFII plasmid, and is a hybrid of a Shigella flexneri plasmid pSF07201 and an E. coli plasmid pCA08. All resistance genes of pKP1814-3 were detected in a ~16-kb IS26-flanked composite transposon carried by a Tn5396 transposon. The circular form (18.3 Kb) was composed of two parts belonging to pKP1814-1 and pKP1814-3, respectively. The plasmid pKP1814-2, carrying multiple virulence factors, encodes IncFIBK and IncFIIK replicons with a size of 187,349?bp. The coexistence of MDR and virulence plasmids largely enhances the bacterial fitness in the host and environment.

Journal: Scientific reports
DOI: 10.1038/s41598-017-17641-2
Year: 2017

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.