X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Hwang, Wontae and Yoon, Sang Sun

Pseudomonas aeruginosa displays intrinsic resistance to many antibiotics and known to acquire actively genetic mutations for further resistance. In this study, we attempted to understand genomic and transcriptomic landscapes of P. aeruginosa clinical isolates that are highly resistant to multiple antibiotics. We also aimed to reveal a mode of antibiotic resistance by elucidating transcriptional response of genes conferring antibiotic resistance. To this end, we sequenced the whole genomes and profiled genome-wide RNA transcripts of three different multi-drug resistant (MDR) clinical isolates that are phylogenetically distant from one another. Multi-layered genome comparisons with genomes of antibiotic-susceptible P. aeruginosa strains and 70 other antibiotic-resistance strains revealed both well-characterized conserved gene mutations and distinct distribution of antibiotic-resistant genes (ARGs) among strains. Transcriptions of genes involved in quorum sensing and type VI secretion systems were invariably downregulated in the MDR strains. Virulence-associated phenotypes were further examined and results indicate that our MDR strains are clearly avirulent. Transcriptions of 64 genes, logically selected to be related with antibiotic resistance in MDR strains, were active under normal growth conditions and remained unchanged during antibiotic treatment. These results propose that antibiotic resistance is achieved by a "constitutive" response scheme, where ARGs are actively expressed even in the absence of antibiotic stress, rather than a "reactive" response. Bacterial responses explored at the transcriptomic level in conjunction with their genome repertoires provided novel insights into (i) the virulence-associated phenotypes and (ii) a mode of antibiotic resistance in MDR P. aeruginosa strains.

Journal: Scientific reports
DOI: 10.1038/s41598-018-37422-9
Year: 2019

Read Publication

 

Stay
Current

Visit our blog »