Hepatotoxicity is the most severe adverse effect of anti-tuberculosis therapy. Isoniazid's metabolite hydrazine is a mitochondrial complex II inhibitor. We hypothesized that mitochondrial DNA variants are risk factors for drug-induced liver injury (DILI) due to isoniazid, rifampicin or pyrazinamide.We obtained peripheral blood from tuberculosis (TB) patients before anti-TB therapy. A total of 38 patients developed DILI due to anti-TB drugs. We selected 38 patients with TB but without DILI as controls. Next-generation sequencing detected point mutations in the mitochondrial DNA genome. DILI was defined as ALT =5 times the upper limit of normal (ULN), or ALT =3 times the ULN with total bilirubin =2 times the ULN.In 38 patients with DILI, the causative drug was isoniazid in eight, rifampicin in 14 and pyrazinamide in 16. Patients with isoniazid-induced liver injury had more variants in complex I's NADH subunit 5 and 1 genes, more nonsynonymous mutations in NADH subunit 5, and a higher ratio of nonsynonymous to total substitutions. Patients with rifampicin- or pyrazinamide-induced liver injury had no association with mitochondrial DNA variants.Variants in complex I's subunit 1 and 5 genes might affect respiratory chain function and predispose isoniazid-induced liver injury when exposed to hydrazine, a metabolite of isoniazid and a complex II inhibitor.
Journal: Journal of clinical medicine
DOI: 10.3390/jcm8081207
Year: 2019