Menu
September 22, 2019

High-quality RNA isolation from wheat immature grains

Authors: Takumi, Shigeo and Okada, Moeko and Michikawa, Asami and Miki, Yuka and Ohno, Ryoko and Yoshida, Kentaro

Grain quality is one of the most important targets in wheat breeding. Transcriptome analyses of wheat developing grains and endosperm have been performed using the microarray and RNA sequencing (RNA-seq) approaches (Wan et al. 2008, 2009; Nemeth et al. 2010; Pellny et al. 2012; Dong et al. 2015). For the RNA-seq analysis of the grain transcriptome and precise quantification of each transcript in developing grain and endosperm, the high-quality RNA is essential. For the microarray analysis, =7.3 RIN (RNA integrity number) value for the RNA sample quality is required according to the Agilent microarray protocol. In the previous report for the transcriptome of wheat developing grains, the total RNA samples with =8.0 RIN values were used for the RNA-seq analysis based on the PacBio and Illumina platforms (Dong et al. 2015). Some RNA extraction buffers containing SDS, CTAB, or TRIzol® reagent (Thermo Fisher Scientific, Waltham, Massachusetts) and several commercial kits for RNA isolation have been used to isolate total RNA from wheat grain and endosperm (Kawakami et al. 1992; Wan et al. 2008; Kang et al. 2013). However, total RNA samples from the wheat developing and immature grains are often damaged due to high content of polysaccharides and high stickiness of the solution homogenized with the RNA extraction buffer, and thus extraction of the high-quality RNA with high RIN value is quite difficult. Here, we report a protocol for the wheat grain RNA extraction using Maxwell RSC Plant RNA Kit (Promega, Madison, Wisconsin).

Journal: Wheat information services
DOI: NA
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.