July 7, 2019  |  

Genetic and functional characterization of an extracellular modular GH6 endo-ß-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13.

Authors: Kim, Do Young and Lee, Min Ji and Cho, Han-Young and Lee, Jong Suk and Lee, Mi-Hwa and Chung, Chung Wook and Shin, Dong-Ha and Rhee, Young Ha and Son, Kwang-Hee and Park, Ho-Yong

The gene (1608-bp) encoding a GH6 endo-ß-1,4-glucanase (CelL) from the earthworm-symbiotic bacterium Cellulosimicrobium funkei HY-13 was cloned from its whole genome sequence, expressed recombinantly, and biochemically characterized. CelL (56.0 kDa) is a modular enzyme consisting of an N-terminal catalytic GH6 domain (from Val57 to Pro396), which is 71 % identical to a GH6 protein (accession no.: WP_034662937) from Cellulomonas sp. KRMCY2, together with a C-terminal CBM 2 domain (from Cys429 to Cys532). The highest catalytic activity of CelL toward carboxymethylcellulose (CMC) was observed at 50 °C and pH 5.0, and was relatively stable at a broad pH range of 4.0-10.0. The enzyme was capable of efficiently hydrolyzing the cellulosic polymers in the order of barley ß-1,3-1,4-D-glucan > CMC > lichenan > Avicel > konjac glucomannan. However, cellobiose, cellotriose, p-nitrophenyl derivatives of mono- and disaccharides, or structurally unrelated carbohydrate polymers including ß-1,3-D-glucan, ß-1,4-D-galactomannan, and ß-1,4-D-xylan were not susceptible to CelL. The enzymatic hydrolysis of cellopentaose resulted in the production of a mixture of 68.6 % cellobiose and 31.4 % cellotriose but barley ß-1,3-1,4-D-glucan was 100 % degraded to cellotriose by CelL. The enzyme strongly bound to Avicel, ivory nut mannan, and chitin but showed relatively weak binding affinity to lichenan, lignin, or poly(3-hydroxybutyrate) granules.

Journal: Antonie van Leeuwenhoek
DOI: 10.1007/s10482-015-0604-2
Year: 2016

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.