September 22, 2019  |  

Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa.

Authors: Bricio-Moreno, Laura and Sheridan, Victoria H and Goodhead, Ian and Armstrong, Stuart and Wong, Janet K L and Waters, Elaine M and Sarsby, Joscelyn and Panagiotou, Stavros and Dunn, James and Chakraborty, Adrita and Fang, Yongliang and Griswold, Karl E and Winstanley, Craig and Fothergill, Joanne L and Kadioglu, Aras and Neill, Daniel R

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.

Journal: Nature communications
DOI: 10.1038/s41467-018-04996-x
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.