X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Yoo, Seung-Il and Lee, Hwa-Yong and Markkandan, Kesavan and Moon, Suyun and Ahn, Yong Ju and Ji, Sumin and Ko, Junsu and Kim, Seong-Jin and Ryu, Hojin and Hong, Chang Pyo

Lentinula edodes is one of the most popular edible mushroom species in the world and contains useful medicinal components, such as lentinan. The light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process for ensuring the quantity and quality of this edible mushroom. To understand the molecular mechanisms underlying this critical developmental process in L. edodes, we characterized the morphological phenotypic changes in a strain, Chamaram, associated with abnormal brown film formation and compared its genome-wide transcriptional features.In the present study, we performed genome-wide transcriptome analyses of different vegetative mycelium growth phenotypes, namely, early white, normal brown, and defective dark yellow partial brown films phenotypes which were exposed to different light conditions. The analysis revealed the identification of clusters of genes specific to the light-induced brown film phenotypes. These genes were significantly associated with light sensing via photoreceptors such as FMN- and FAD-bindings, signal transduction by kinases and GPCRs, melanogenesis via activation of tyrosinases, and cell wall degradation by glucanases, chitinases, and laccases, which suggests these processes are involved in the formation of mycelial browning in L. edodes. Interestingly, hydrophobin genes such as SC1 and SC3 exhibited divergent expression levels in the normal and abnormal brown mycelial films, indicating the ability of these genes to act in fruiting body initiation and formation of dikaryotic mycelia. Furthermore, we identified the up-regulation of glycoside hydrolase domain-containing genes in the normal brown film but not in the abnormal film phenotype, suggesting that cell wall degradation in the normal brown film phenotype is crucial in the developmental processes related to the initiation and formation of fruiting bodies.This study systematically analysed the expression patterns of light-induced browning-related genes in L. edodes. Our findings provide information for further investigations of browning formation mechanisms in L. edodes and a foundation for future L. edodes breeding.

Journal: BMC genomics
DOI: 10.1186/s12864-019-5509-4
Year: 2019

Read Publication

 

Stay
Current

Visit our blog »