X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Author(s): Rowell, W. and Peluso, P. and Harting, J. and Qian, Y. and Wenger, A. and Hall, R. and Rank, D.

Human genomic variations range in size from single nucleotide substitutions to large chromosomal rearrangements. Sequencing technologies tend to be optimized for detecting particular variant types and sizes. Short reads excel at detecting SNVs and small indels, while long or linked reads are typically used to detect larger structural variants or phase distant loci. Long reads are more easily mapped to repetitive regions, but tend to have lower per-base accuracy, making it difficult to call short variants. The PacBio Sequel System produces two main data types: long continuous reads (up to 100 kbp), generated by single passes over a long template, and Circular Consensus Sequence (CCS) reads, generated by calculating the consensus of many sequencing passes over a single shorter template (500 bp to 20 kbp). The long-range information in continuous reads is useful for genome assembly and structural variant detection. The higher base accuracy of CCS effectively detects and phases short variants in single molecules. Recent improvements in library preparation protocols and sequencing chemistry have increased the length, accuracy, and throughput of CCS reads. For the human sample HG002, we collected 28-fold coverage 15 kbp high-fidelity CCS reads with an average read quality above Q20 (99% accuracy). The length and accuracy of these reads allow us to detect SNVs, indels, and structural variants not only in the Genome in a Bottle (GIAB) high confidence regions, but also in segmental duplications, HLA loci, and clinically relevant “difficult-to-map” genes. As with continuous long reads, we call structural variants at 90.0% recall compared to the GIAB structural variant benchmark “truth” set, with the added advantages of base pair resolution for variant calls and improved recall at compound heterozygous loci. With minimap2 alignments, GATK4 HaplotypeCaller variant calls, and simple variant filtration, we have achieved a SNP F-Score of 99.51% and an INDEL F-Score of 80.10% against the GIAB short variant benchmark “truth” set, in addition to calling variants outside of the high confidence region established by GIAB using previous technologies. With the long-range information available in 15 kbp reads, we applied the read-backed phasing tool WhatsHap to generate phase blocks with a mean length of 65 kbp across the entire genome. Using an alignment-based approach, we typed all major MHC class I and class II genes to at least 3-field precision. This new data type has the potential to expand the GIAB high confidence regions and “truth” benchmark sets to many previously difficult-to-map genes and allow a single sequencing protocol to address both short variants and large structural variants.

Organization: PacBio
Year: 2018

View Conference Poster

 

Stay
Current

Visit our blog »