X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Bruske, Ellen and Otto, Thomas D and Frank, Matthias

Plasmodium falciparum exhibits a high degree of inter-isolate genetic diversity in its variant surface antigen (VSA) families: P. falciparum erythrocyte membrane protein 1, repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR). The role of recombination for the generation of this diversity is a subject of ongoing research. Here the genome of E5, a sibling of the 3D7 genome strain is presented. Short and long read whole genome sequencing (WGS) techniques (Ilumina, Pacific Bioscience) and a set of 84 microsatellites (MS) were employed to characterize the 3D7 and non-3D7 parts of the E5 genome. This is the first time that VSA genes in sibling parasites were analysed with long read sequencing technology.Of the 5733 E5 genes only 278 genes, mostly var and rifin/stevor genes, had no orthologues in the 3D7 genome. WGS and MS analysis revealed that chromosomal crossovers occurred at a rate of 0-3 per chromosome. var, stevor and rifin genes were inherited within the respective non-3D7 or 3D7 chromosomal context. 54 of the 84 MS PCR fragments correctly identified the respective MS as 3D7- or non-3D7 and this correlated with var and rifin/stevor gene inheritance in the adjacent chromosomal regions. E5 had 61 var and 189 rifin/stevor genes. One large non-chromosomal recombination event resulted in a new var gene on chromosome 14. The remainder of the E5 3D7-type subtelomeric and central regions were identical to 3D7.The data show that the rifin/stevor and var gene families represent the most diverse compartments of the P. falciparum genome but that the majority of var genes are inherited without alterations within their respective parental chromosomal context. Furthermore, MS genotyping with 54 MS can successfully distinguish between two sibling progeny of a natural P. falciparum cross and thus can be used to investigate identity by descent in field isolates.

Journal: Malaria journal
DOI: 10.1186/s12936-018-2503-2
Year: 2018

Read Publication

 

Stay
Current

Visit our blog »