September 22, 2019  |  

Single molecule RNA sequencing uncovers trans-splicing and improves annotations in Anopheles stephensi.

Authors: Jiang, X and Hall, A B and Biedler, J K and Tu, Z

Single molecule real-time (SMRT) sequencing has recently been used to obtain full-length cDNA sequences that improve genome annotation and reveal RNA isoforms. Here, we used one such method called isoform sequencing from Pacific Biosciences (PacBio) to sequence a cDNA library from the Asian malaria mosquito Anopheles stephensi. More than 600 000 full-length cDNAs, referred to as reads of insert, were identified. Owing to the inherently high error rate of PacBio sequencing, we tested different approaches for error correction. We found that error correction using Illumina RNA sequencing (RNA-seq) generated more data than using the default SMRT pipeline. The full-length error-corrected PacBio reads greatly improved the gene annotation of Anopheles stephensi: 4867 gene models were updated and 1785 alternatively spliced isoforms were added to the annotation. In addition, six trans-splicing events, where exons from different primary transcripts were joined together, were identified in An. stephensi. All six trans-splicing events appear to be conserved in Culicidae, as they are also found in Anopheles gambiae and Aedes aegypti. The proteins encoded by trans-splicing events are also highly conserved and the orthologues of these proteins are cis-spliced in outgroup species, indicating that trans-splicing may arise as a mechanism to rescue genes that broke up during evolution.© 2017 The Royal Entomological Society.

Journal: Insect molecular biology
DOI: 10.1111/imb.12294
Year: 2017

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.