April 21, 2020  |  

Mce3R Stress-Resistance Pathway Is Vulnerable to Small-Molecule Targeting That Improves Tuberculosis Drug Activities.

Authors: Yang, Xinxin and Yuan, Tianao and Ma, Rui and Chacko, Kieran I and Smith, Melissa and Deikus, Gintaras and Sebra, Robert and Kasarskis, Andrew and van Bakel, Harm and Franzblau, Scott G and Sampson, Nicole S

One-third of the world's population carries Mycobacterium tuberculosis ( Mtb), the infectious agent that causes tuberculosis (TB), and every 17 s someone dies of TB. After infection, Mtb can live dormant for decades in a granuloma structure arising from the host immune response, and cholesterol is important for this persistence of Mtb. Current treatments require long-duration drug regimens with many associated toxicities, which are compounded by the high doses required. We phenotypically screened 35 6-azasteroid analogues against Mtb and found that, at low micromolar concentrations, a subset of the analogues sensitized Mtb to multiple TB drugs. Two analogues were selected for further study to characterize the bactericidal activity of bedaquiline and isoniazid under normoxic and low-oxygen conditions. These two 6-azasteroids showed strong synergy with bedaquiline (fractional inhibitory concentration index = 0.21, bedaquiline minimal inhibitory concentration = 16 nM at 1 µM 6-azasteroid). The rate at which spontaneous resistance to one of the 6-azasteroids arose in the presence of bedaquiline was approximately 10-9, and the 6-azasteroid-resistant mutants retained their isoniazid and bedaquiline sensitivity. Genes in the cholesterol-regulated Mce3R regulon were required for 6-azasteroid activity, whereas genes in the cholesterol catabolism pathway were not. Expression of a subset of Mce3R genes was down-regulated upon 6-azasteroid treatment. The Mce3R regulon is implicated in stress resistance and is absent in saprophytic mycobacteria. This regulon encodes a cholesterol-regulated stress-resistance pathway that we conclude is important for pathogenesis and contributes to drug tolerance, and this pathway is vulnerable to small-molecule targeting in live mycobacteria.

Journal: ACS infectious diseases
DOI: 10.1021/acsinfecdis.9b00099
Year: 2019

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.