Menu
April 21, 2020  |  

Mate Selection in Self-Compatible Wild Tobacco Results from Coordinated Variation in Homologous Self-Incompatibility Genes.

Authors: Guo, Han and Halitschke, Rayko and Wielsch, Natalie and Gase, Klaus and Baldwin, Ian T

In flowering plants, intraspecific mate preference is frequently related to mating systems: the rejection of self pollen in self-incompatible (SI) plants that prevents inbreeding is one of the best described examples. However, in other mating systems, more nuanced patterns of pollen rejection occur. In the self-compatible (SC) Nicotiana attenuata, in which SI is not found and all crosses are compatible, certain pollen genotypes are consistently selected in mixed pollinations. However, the molecular mechanisms of this polyandrous mate selection remain unknown. Style-expressed NaS-like-RNases and pollen-expressed NaSLF-like genes, homologous to SI factors in Solanaceae, were identified and examined for a role in N. attenuata's mate selection. A comparison of two NaS-like-RNases and six NaSLF-like genes among 26 natural accessions revealed specific combinations of co-expression and direct protein-protein interactions. To evaluate their role in mate selection, we silenced the expression of specific NaS-like-RNases and NaSLF-like proteins and conducted diagnostic binary mixed pollinations and mixed pollinations with 14 different non-self pollen donors. Styles expressing particular combinations of NaS-like-RNases selected mates from plants with corresponding NaS-like-RNase expression patterns, while styles lacking NaS-like-RNase expression were non-selective in their fertilizations, which reflected the genotype ratios of pollen mixtures deposited on the stigmas. DNA methylation could account for some of the observed variation in stylar NaS-like-RNase patterns. We conclude that the S-RNase-SLF recognition mechanism plays a central role in polyandrous mate selection in this self-compatible species. These results suggest that after the SI-SC transition, natural variation of SI homologous genes was repurposed to mediate intraspecific mate selection. Copyright © 2019 Elsevier Ltd. All rights reserved.

Journal: Current biology
DOI: 10.1016/j.cub.2019.05.042
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.