

Sequel® Systems SMRT® Link Web Services
API Use Cases v10.1

Pacific Biosciences

Introduction ... 3

Connecting to the SMRT Link Services API Securely ... 3
How WSO2 Authentication Works ... 3
SSL Security Features ... 5
Python Example ... 6

How to Set Up a Run in Run Design ... 8

How to Get Recent Runs .. 9

How to Monitor the Progress of a SMRT Link Run .. 10

How to Run Jobs Using Services .. 12

How to Import a Completed Collection (Data Set) ... 13

Searching for a Data Set ... 13

How to Capture Run-Level Summary Metrics .. 13

How to Get SMRT Link Data Set Reports by Using the UUID ... 14

How to Get QC Reports for a Specific Collection .. 15

How to Get QC Reports for a Specific SMRT Link Run ... 15

How to Set up a SMRT Link Analysis Job for a Specific Workflow ... 16

How to Query Job History .. 20

How to Copy and Rerun a SMRT Link Analysis ... 21

How to Run an Analysis on All Collections in a Run .. 21

How to Delete a SMRT Link Job .. 24

How to Create and Manipulate a Project .. 26

How to Retrieve Mapping Report Metrics From an Analysis Job .. 27

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

3

Introduction
The SMRT Link Web Services API, provided by Pacific Biosciences, allows integration of SMRT Link with
third-party software. It is also used for accessing features such as designing and performing quality control
on instrument runs, querying new data from the instrument, and starting analyses on the sequence data.

This document describes common tasks performed using the SMRT Link Web Services API and provides
"how to" recipes for accomplishing these tasks. To accomplish a task, you usually need to perform several
API calls; the document describes the order of these calls.

As an example of a real-world workflow, most of the examples below roughly correspond to what happens
internally when a Site Acceptance Test is run on Sequel Systems using SMRT Link, starting from run design
and finishing with the analysis pipeline.

Note: For clarity, all of the API examples in this document use the unauthenticated, insecure
endpoints. In a default SMRT Link installation, these are available from localhost on port 9091. If you
are connecting from a remote host and/or you require SSL or authentication, you will instead go through the
WSO2 API Manager layer, which uses port 8243 and adds the prefix /SMRTLink/1.0.0. For example,
with default installer settings, these two URLs refer to the same endpoint (assuming that the SMRT Link
server is running on localhost):

http://localhost:9091/smrt-link/datasets/subreads
https://servername.serverdomain:8243/SMRTLink/1.0.0/smrt-link/datasets/subreads

The next section explains these connections and provides programmatic examples. For other detailed
information on the SMRT Link Web Services API calls, see
https://<SMRTLinkServername>:8243/sl/docs/services/

where <SMRTLinkServername>:8243 is the name and port number of your local SMRT Link server.

Connecting to the SMRT Link Services API Securely
SMRT Link v10.1 restricts access to the services port (Default = 9091) to clients running on localhost or
connecting via the secure (HTTPS) WSO2 API Manager on port 8243, with authentication credentials.

If you only connect from localhost, the existing clients will continue to work as long as you specify
localhost or 127.0.0.1 and not the full host/domain name. If you are running any external database or
automation programs that connect to the SMRT Link API, this section describes how to adapt your code to
v10.1.

Please use caution when embedding user credentials in shell scripts or source code, as this may
expose them in log files or shell history. We recommend that automated clients such as LIMS systems
use a special-purpose account with limited or no system login access. For example, the SMRT Link v10.1
installation process automatically creates a user in WSO2 for the Sequel Systems to use when connecting.
Since this user is only known to WSO2, it cannot be used for any purpose other than connecting to the
SMRT Link API.

How WSO2 Authentication Works
Secure API access requires passing encoded authentication credentials in the HTTP header, with a slightly
different endpoint URL. This is a two-step process: First the client requests an access token using the
provided user name and password, then connects to the API endpoint using the access token. The token
remains good for up to two hours (7200 seconds), but several caveats about token expiry are discussed
below.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

4

To connect to a secure API endpoint, follow this procedure, replacing <servername> with the fully-qualified
domain name:

1. POST a request to https://<servername>:8243/token with these HTTP headers:

Content-Type: application/x-www-form-urlencoded
Authorization: Basic
S01MejVnN2ZibXg4UlZGS0tkdTBOT3JKaWM0YTo2TmpSWEJjRmZMWk93SGMwWGxpZGl6NHl3Y3Nh

and this content, replacing <user> and <password> with the actual credentials:

{
 "grant_type": "password",
 "username": "<user>",
 "password": "<password>",
 "scope": "welcome run-design run-qc openid analysis sample-setup data-
management userinfo"
}

The "Basic" authorization identifies the client to WSO2; for convenience we use hard-coded client
registration credentials in SMRT Link and the pbservice clients, shown above. (The string passed
here is a base-64 encoding of combined user and password strings.)

The client response looks something like this (the id_token string can be ignored and is omitted here
for clarity):

{
 'access_token': '05649edd-9b67-3754-9e5c-5347cdedbf99',
 'id_token': '<id_token>',
 'expires_in': 6272,
 'token_type': 'Bearer',
 'scope': 'analysis data-management openid run-design run-qc userinfo',
 'refresh_token': '121e02f9-3083-3a3e-b126-547e344769bd'
}

2. Perform the API client call. The URL must now include the prefix /SMRTLink/1.0.0, and use HTTPS
port 8243. For example, these calls are equivalent:

GET http://localhost:9091/status
GET https://servername:8243/SMRTLink/1.0.0/status

Also note that all service endpoints that were originally prefixed with /secondary-analysis now
need to use /smrt-link instead, for example:

GET http://localhost:9091/secondary-analysis/datasets/subreads

now becomes:

GET https://servername:8243/SMRTLink/1.0.0/smrt-link/datasets/subreads

These HTTP headers are required, replacing <access_token> with the field from the response in Step
1:

Content-type: application/json
Authorization: Bearer <access_token>

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

5

3. The access token remains valid for the duration specified by expires_in (in seconds). In practice we
find it safest to refresh sooner than this to avoid clock skew issues. You can use the refresh token to
request a new access_token instead passing the user/password credentials:

{
 "grant_type": "refresh_token",
 "refresh_token": "<refresh_token>"
}

This is posted to the same /token endpoint as in Step 1, with the same headers. Note however that if
you have multiple clients running simultaneously, the refresh mechanism will effectively lead to
a race condition, therefore re-authenticating each time is recommended if the clients are
running for longer than the expiry time.

4. You can revoke an access token by POSTing to /revoke:

POST https://servername:8243/revoke

Use the same headers as Step 1, and this body:

{
 "token": "<access_token>",
 "token_type_hint": "access_token"
}

This is what the logout button in SMRT Link does. (It is not, however, necessary for non-browser client
applications.)

As a compact practical example, these Linux commands show how to use the secure API with the curl and
jq utilities:

AUTH_TOKEN=$(curl -k -s --user KMLz5g7fbmx8RVFKKdu0NOrJic4a:6NjRXBcFfLZOwHc0Xlidiz4ywcsa
-d
"grant_type=password&username=$API_USER&password=$API_PASS&scope=sample-setup+run-
design+run-qc+data-management+analysis+userinfo+openid"
https://servername:8243/token | jq -r .access_token)

curl -k -s -H "Authorization: Bearer $AUTH_TOKEN"
https://servername:8243/SMRTLink/1.0.0/status

Here the API_USER and API_PASS variables should contain the actual user credentials; again, please use
caution when passing sensitive authentication information. Note that curl internally converts the hard-
coded --user credentials to the appropriate basic authorization header, and also sets the Content-Type
header automatically.

SSL Security Features

The full SSL/HTTPS implementation includes several checks designed to prevent "man-in-the-middle"
attacks by hackers, including the reliance on central certificating authorities to sign SSL keys, which are also
tied to specific host names. The default SMRT Link installation uses a generic "self-signed" certificate that
can optionally be replaced with a user-provided official certificate for that site. If this is not done, or if you
encounter other problems with SSL security features, you may need to disable these features. This does not
eliminate encryption or authentication, but it is generally discouraged by HTTP client libraries and tools. For
example in the shell commands shown in the previous section, the -k flag tells curl to disable SSL
certificate verification.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

6

Python Example
The following source code provides a complete working example of a simple authenticated client call using
only the Python 3.7 standard library plus the request module, equivalent to the curl commands above:

class Wso2Constants(object):

 # These client registration credentials are valid for every SMRT Link

 # server (and are also used by the SL UI)

 SECRET = "KMLz5g7fbmx8RVFKKdu0NOrJic4a"

 CONSUMER_KEY = "6NjRXBcFfLZOwHc0Xlidiz4ywcsa"

 SCOPES = ["welcome", "run-design", "run-qc", "openid", "analysis",

 "sample-setup", "data-management", "userinfo"]

def _create_auth(secret, consumer_key):

 return base64.b64encode(":".join([secret, consumer_key]).encode("utf-8"))

def _get_token(url, user, password, scopes, secret, consumer_key):

 basic_auth = _create_auth(secret, consumer_key).decode("utf-8")

 headers = {

 "Authorization": "Basic {}".format(basic_auth),

 "Content-Type": "application/x-www-form-urlencoded"

 }

 scope_str = " ".join({s for s in scopes})

 payload = dict(grant_type="password",

 username=user,

 password=password,

 scope=scope_str)

 # verify is false to disable the SSL cert verification

 return requests.post(url, payload, headers=headers, verify=False)

def get_smrtlink_wso2_token(user, password, url):

 r = _get_token(url, user, password, Wso2Constants.SCOPES, Wso2Constants.SECRET,
Wso2Constants.CONSUMER_KEY)

 r.raise_for_status()

 j = r.json()

 access_token = j['access_token']

 refresh_token = j['refresh_token']

 scopes = j['scope'].split(" ")

 return access_token, refresh_token, scopes

def _to_headers(access_token):

 return {

 "Authorization": "Bearer {}".format(access_token),

 "Content-type": "application/json"

 }

def _get_endpoint(api_path, access_token):

 api_url = "https://{h}:8243/SMRTLink/1.0.0{p}".format(h=host, p=api_path)

 headers = _to_headers(access_token)

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

7

 # verify=False disables SSL verification

 response = requests.get(api_url, headers=headers, verify=False)

 response.raise_for_status()

 return response.json()

def get_status(hostname, user, password):

 token_url = "https://{h}:8243/token".format(h=host)

 access_token, refresh_token, scopes = get_smrtlink_wso2_token(user, password,
token_url)

 return _get_endpoint("/status", access_token)

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

8

How to Set Up a Run in Run Design
To set up a Run Design, perform the following steps:

1. Prepare the Run Design information in an XML file. The XML file should correspond to the
PacBioDataModel.xsd schema.

2. Create the Run Design by using the POST request with the following endpoint:

POST /smrt-link/runs

The payload (request body) for this POST request is a JSON string with the following fields:

• dataModel: The serialized XML containing the Run Design information.
• name: The name of the run.
• summary: A short description of the run.

Example: Create a Run Design using the following API call:
POST /smrt-link/runs

Use the payload as in the following example:

{
 "dataModel" : "https://smrtlink-alpha-
nightly.nanofluidics.com:8243/sl/docs/xsd-datamodels/PacBioDataModel.xsd",
 "name" : "54001_SAT",
 "summary" : "SAT"
}

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

9

How to Get Recent Runs
To get recent runs, perform the following steps:

1. Get the list of all runs by using the GET request with the following endpoint:

GET /smrt-link/runs

2. Filter the response based on the value of the createdAt field. For example:

"createdAt": "2016-12-13T19:11:54.086Z"

Note: You may also search runs based on specific criteria, such as reserved state, creator, or summary
substring.

Example: Find all runs created on or after 01.01.2017
First, get the list of all runs:

GET /smrt-link/runs

The response is an array of run objects, as in the following example: (Some fields are removed for display
purposes.)

 [
 {
 "name" : "54001_SAT",
 "uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
 "createdAt" : "2016-11-08T17:50:57.955Z",
 "summary" : "SAT run"
 },
 {
 "name" : "54001_ecoli_15k",
 "uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15",
 "createdAt" : "2017-01-20T16:08:41.610Z",
 "summary" : "E. coli assembly"
 },
 {
 "name" : "54001_hla_amplicons",
 "uniqueId : "5026afad-fbfa-407a-924b-f89dd019ca9f",
 "createdAt" : "2017-01-21T00:21:52.534Z",
 "summary" : "Human HLA"
 }
]

Now, search the above response for all run objects whose createdAt field starts with the 2017-01
substring. In the above example, you will get two runs that fit your criteria (that is, created on or after
01.01.2017):

• Run with "name" equal to "54001_ecoli_15k",
• Run with "name" equal to "54001_hla_amplicons".

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

10

How to Monitor the Progress of a SMRT Link Run
Run progress can be monitored by looking at the completion status of each Collection associated with that
run. Perform the following steps:

1. If you do not have the Run UUID, retrieve it as described in Step 1 of How to Get Recent Runs.

2. Once you have the Run UUID, get all Collections that belong to the run. Use the Run UUID in the GET
request with the following endpoint:

GET /smrt-link/runs/{runUUID}/collections

The response contains the list of all Collections of that run.

3. Monitor Collection status to see when all Collections are complete.

Until all Collections of the run have the field status set to Complete, repeat the GET request with the
following endpoint:

GET /smrt-link/runs/{runUUID}/collections

You may also monitor each Collection individually.

Use the Collection UUID in the GET request with the following endpoint:

GET /smrt-link/runs/{runUUID}/collections/{collectionUUID}

4. To monitor run progress using QC metrics as well, do this at the Collection level, for each Collection that
belongs to this run. For instructions, see How to Get QC Reports for a Specific Collection.

The full set of QC metrics for a Collection will be available only when the Collection is complete. Monitor
the completion status of each Collection and, for each complete Collection, check its QC metrics. QC
metrics of all Collections that belong to the run will let you evaluate the overall success of the run.

Example
To monitor the run with Name = 54001_DryRun_2Cells_20161219, use the following steps:

1. Get the list of all runs as described in the previous section.

GET /smrt-link/runs

The response is an array of run objects, as in the following example: (Some fields are removed for
display purposes.)

 [
 {
 "name" : "54001_SAT",
 "uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
 "createdAt" : "2016-11-08T17:50:57.955Z",
 "summary" : "SAT run"
 },
 {
 "name" : "54001_ecoli_15k",
 "uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15",
 "createdAt" : "2017-01-20T16:08:41.610Z",
 "summary" : "E. coli assembly"
 },
 {
 "name" : "54001_hla_amplicons",

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

11

 "uniqueId" : "5026afad-fbfa-407a-924b-f89dd019ca9f",
 "createdAt" : "2017-01-21T00:21:52.534Z",
 "summary" : "Human HLA"
 }
]

2. Search the above response for the object with the name field equal to 54001_SAT.

From the above example, you will get the run object with the uniqueId field equal to a836efbc-
fd58-40f6-b586-43c743730fe0.

3. With this Run UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all Collections that belong to
this run:

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-43c743730fe0/collections

The response is an array of Collection objects of this run, as in the following example:

 [{
 "name" : "54001_SAT_1stCell",
 "instrumentName" : "Sequel",
 "context" : "m54001_161219_161247",
 "well" : "A01",
 "status" : "Complete",
 "instrumentId" : "54001",
 "startedAt" : "2016-12-19T16:12:47.014Z",
 "uniqueId" : "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b",
 "collectionPathUri" : "/data/sequel/r54001_20161219_160902/1_A01",
 "runId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
 "movieMinutes" : 120
 }, {
 "name" : "54001_SAT_2ndCell",
 "instrumentName" : "Sequel",
 "context" : "m54001_161219_184813",
 "well" : "B01",
 "status" : "Ready",
 "instrumentId" : "54001",
 "startedAt" : "2016-12-19T16:12:47.014Z",
 "uniqueId" : "08af5ab4-7cf4-4d13-9bcb-ae977d493f04",
 "collectionPathUri" : "/data/sequel/r54001_20161219_160902/2_B01",
 "runId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
 "movieMinutes" : 120
 }
]

In the above example, the first Collection has status of Complete.

You can take its UUID, i.e. uniqueId: 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b, and get its
QC metrics. For instructions, see How to Get QC Reports for a Specific Collection.

The second Collection has a status of Ready.

You can take its UUID, i.e. uniqueId: 08af5ab4-7cf4-4d13-9bcb-ae977d493f04, and monitor
its status until it becomes Complete. To do do, use the following API call:

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-
43c743730fe0/collections/08af5ab4-7cf4-4d13-9bcb-ae977d493f04

Once this Collection becomes complete, you can get its QC metrics as well.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

12

How to Run Jobs Using Services
SMRT Link runs several different types of "jobs" which consist of tasks that may take an arbitrarily long
time to run and are therefore executed asynchronously. To view a list of supported job types, enter:

GET /smrt-link/job-manager/job-types

 [
 {
 "jobTypeId": "db-backup",
 "description": "Create a DB backup of the SMRT Link system",
 "isQuick": true,
 "isMultiJob": false
 },
 {
 "jobTypeId": "delete-datasets",
 "description": "(Soft) delete of PacBio DataSet XML",
 "isQuick": true,
 "isMultiJob": false
 },
 ...
]

Note: "Quick" jobs (generally taking less than a minute) have their own queue, separate from analysis jobs
and other I/O intensive tasks.

Creating a job follows this pattern:

POST /smrt-link/job-manager/jobs/<jobTypeId>

The request body varies depending on job type, from a single path field to more complex data types,
several examples of which are described below. The server should respond with 201: Created and the
model for the new job:

 {
 "name": "import-dataset",
 "updatedAt": "2018-06-19T21:13:31.047Z",
 "workflow": "{}",
 "path": "/smrtlink/userdata/jobs_root/000/000001",
 "state": "CREATED",
 "tags": "",
 "uuid": "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b",
 "projectId": 1,
 "jobTypeId": "import-dataset",
 "id": 1,
 "smrtlinkVersion": "6.0.0.SNAPSHOT38748",
 "comment": "Description for job Import PacBio DataSet",
 "createdAt": "2018-06-19T21:13:31.047Z",
 "isActive": true,
 "createdBy": null,
 "isMultiJob": false,
 "jsonSettings":
"{\"path\":\"/data/sequel/r54001_20161219_160902/1_A01/m54001_20161219_170101.

subreadset.xml\",\"datasetType\":\"PacBio.DataSet.SubreadSet\",\"submit\":true}",

 "jobUpdatedAt": "2018-06-19T21:13:31.047Z",
 }

Client code should now block until the job is complete, which should result in the state field changing to
SUCCESSFUL if all goes well.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

13

Note: Blocking mean that the client will poll for the server to complete a Job. When the system is under
minimal load, blocking can be used instead of manually polling for the job to complete. High-computational
situations, such as a large FASTA file conversion, are not appropriate for blocking.

How to Import a Completed Collection (Data Set)
Once a run is complete and the data have been transfered off the instrument, the resulting Data Set(s) can
be imported into SMRT Link. This creates an import-dataset job that runs asynchronously and
generates several reports used to assess run quality.

To import a Data Set, use this API call:

POST /smrt-link/job-manager/jobs/import-dataset

The request body in this case is very simple:
 {
 "path":
"/data/sequel/r54001_20161219_160902/1_A01/m54001_20161219_170101.subreadset.xml"
 }

The server should respond with 201: Created and the model for the new job; it should only take several
minutes at most for the import job to complete.

Note that the same import-dataset job type is also used to import other Data Set types such as the
ReferenceSet XML used to run the SAT pipeline.

Searching for a Data Set
The Data Set retrieval endpoints support a number of search operators that may be included as CGI
parameters:

GET /smrt-link/datasets/subreads?name=human

String fields use case-insensitive partial matching, so this will retrieve all Data Sets whose names include
human in any combination of upper and lower case.

You can also retrieve a selection of Data Sets by posting a search query with a list of UUIDs:

POST /smrt-link/datasets/subreads
 {
 "uuid": "in:7cf74b62-c6b8-431d-b8ae-7e28cfd8343b,a836efbc-fd58-40f6-b586-
43c743730fe0"
 }

Note: The list needs to start with in: to tell the search API to find values from a list.

How to Capture Run-Level Summary Metrics
Run-level summary metrics are captured in the QC reports. See the following sections:

• How to Get QC Reports for a Specific SMRT Link Run.

• How to Get QC Reports for a Specific Collection.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

14

How to Get SMRT Link Data Set Reports by Using the UUID
To get reports for a Data Set, given the Data Set UUID, perform the following steps:

1. Determine the Data Set type from the list of available types. Use the GET request with the following
endpoint:

GET /smrt-link/dataset-types

2. Get the corresponding Data Set type string. The Data Set type is in the shortName field.

3. Get reports that correspond to the Data Set. Given the Data Set UUID and the Data Set type, use them
in the GET request with the following endpoint:

GET /smrt-link/datasets/{datasetType}/{datasetUUID}/reports

Example:
To get reports associated with a subreadset with UUID = 146338e0-7ec2-4d2d-b938-11bce71b7ed1,
perform the following steps:

Use the GET request with the following endpoint:

GET /smrt-link/dataset-types

You see that the shortName of SubreadSets is subreads. The desired endpoint is:

/smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Use the GET request with this endpoint to get reports that correspond to the SubreadSet with
UUID = 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b:

GET /smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Once you have the UUID for an individual report, download it using the datastore files service with the
uuid field:

GET /smrt-link/datastore-files/519817b6-4bfe-4402-a54e-c16b29eb06eb/download

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

15

How to Get QC Reports for a Specific Collection
For completed Collections, the Collection UUID is the same as the UUID of the SubreadSet for that
Collection. To retrieve the QC reports of a completed Collection, given the Collection UUID, perform the
following steps:

1. Get the QC reports that correspond to this Collection by using the GET request with the following
endpoint:

GET /smrt-link/datasets/subreads/{collectionUUID}/reports

See How to Get SMRT Link reports for Data Sets by Using the UUID for more details.

Note: Obtaining Data Set reports based on the Collection UUID as described above will only work if the
Collection is complete. If the Collection is not complete, then the SubreadSet does not exist yet.

How to Get QC Reports for a Specific SMRT Link Run
To get QC reports for a specific run, given the run Name, perform the following steps:

1. Get the list of all runs by using the GET request with the following endpoint:

GET /smrt-link/runs

In the response, perform a text search for the run name: Find the object whose name field is equal to
the run name, and get the Run UUID, which is found in the uniqueId field.

2. Get all Collections that belong to this run by using the Run UUID found in the previous step in the GET
request with the following endpoint:

GET /smrt-link/runs/{runUUID}/collections

3. Take a Collection UUID of one of Collection objects received in the previous response. The Collection
UUIDs are in the uniqueId fields.

For complete Collections, the Collection UUID is the same as the UUID of the SubreadSet for that
Collection.

Make sure that the Collection whose uniqueId field you take has the field status set to Complete.
This is because obtaining Data Set reports based on the Collection UUID as described below will only
work if the Collection is complete. If the Collection is not complete, the SubreadSet does not exist yet.

You can now retrieve the QC reports that correspond to this Collection as described in How to Get
SMRT Link Reports for Data Sets by Using the UUID.

4. Repeat Step 3 to download QC reports for all complete Collections of that run.

Example
You view the Run QC page in SMRT Link, and open the page of a run with a status of Complete. Take the
run name and look for the Run UUID in the list of all runs, as described above.

Note: The Run ID also appears in the {runUUID} path parameter of the SMRT Link UI URL:

http://SMRTLinkServername.domain:9090/#/run-qc/{runUUID}

So the shorter way would be to take the Run UUID directly from the URL, such as

http://SMRTLinkServername.domain:9090/#/run-qc/a836efbc-fd58-40f6-b586-43c743730fe0

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

16

With this Run UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all Collections that belong to this run:

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-43c743730fe0/collections

Take a UUID of a completed Collection, such as uniqueId: 59230aeb-a8e3-4b46-b1b1-
24c782c158c1. With this Collection UUID, retrieve QC reports of the corresponding SubreadSet:

GET /smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Take a UUID of some report, such as uuid: 00c310ab-e989-4978-961e-c673b9a2b027. With this
report UUID, download the corresponding report file:

GET /smrt-link/datastore-files/00c310ab-e989-4978-961e-c673b9a2b027/download

Repeat the last two API calls until you download all desired reports for all complete Collections.

How to Set up a SMRT Link Analysis Job for a Specific
Workflow
Note to users of SMRT Link v7.0.0 or earlier: The analysis engine (pbsmrtpipe) was replaced in
SMRT Link v8.0 with Cromwell, developed by the Broad Institute, and the names of workflows and
options have changed significantly. The data model remains the same, as does most of the services API
(aside from the change of job type ID). Please see SMRT Tools Reference Guide for details about
Cromwell changes. Note that for backwards compatibility, the terms "pipeline" and "workflow" are used
interchangeably when referring to specific applications.

To create an analysis job for a specific workflow, you need to create a job of type analysis with the
payload based on the template of the desired pipeline. Perform the following steps:

1. Get the list of all pipeline templates used for creating analysis jobs:

GET /smrt-link/resolved-pipeline-templates

2. In the response, search for the name of the specific pipeline to set up. Once the desired template is
found, note the values of the pipeline id and entryPoints elements of that template.

3. Identify the Data Set(s) you want to use to run the analysis, and make note of the UUID(s).

4. For each entry point, find the corresponding record in the dataset-types endpoint, and extract the
shortName field:

GET /smrt-link/dataset-types

5. For each input Data Set, check whether a record already exists at the appropriate Data Set endpoint,
and if one does not, it should be imported as described above. The Data Set endpoints take this form:

GET /smrt-link/datasets/<shortName>/UUID

6. Build the request body for creating a job of type analysis. The basic structure looks like this:

 {
 "entryPoints": [
 {
 "datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet"
 },

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

17

 {
 "datasetId": "1a369917-507e-4f70-9f38-69614ff828b6",
 "entryId": "eid_ref_dataset",
 "fileTypeId": "PacBio.DataSet.ReferenceSet"
 }
],
 "name": "Lambda SAT job",
 "pipelineId": "cromwell.workflows.pb_sat",

 "taskOptions": [],
 "workflowOptions": []
 }

Use the pipeline id found in Step 2 as the value for the pipelineId element.

Use Data Set types of the entryPoints array found in Step 1 and corresponding Data Set IDs found
in Step 2 as the values for elements of the entryPoints array.

The Data Set IDs may be provided either as UUIDs (which are specified by the XML file and are
independent of the server used) or integer IDs (which are generated by the server when the Data Sets
are imported). In most cases the UUIDs will be easier to work with as they are known in advance.

Note that the taskOptions array is optional and may be completely empty in the request body.
(workflowOptions is not only optional but the contents are ignored by the server.)

7. Create a job of type analysis. Use the request body built in the previous step in the POST request
with the following endpoint:

POST /smrt-link/job-manager/jobs/analysis

8. You may monitor the state of the job created in Step 6 with the following request:

GET /smrt-link/job-manager/jobs/analysis/{jobID}/events

where jobID is equal to the value received in the id element of the response in Step 6.

Example
Suppose you want to set up an analysis job for the SAT pipeline.

First, get the list of all pipeline templates used for creating analysis jobs:

GET /smrt-link/resolved-pipeline-templates

The response is an array of pipeline template objects. In this response, do the search for the entry with
name : Site Acceptance Test (SAT). The entry may look as in the following example: (Task
options were truncated for clarity.)

 {
 "name": "Site Acceptance Test (SAT)",
 "id" : "cromwell.workflows.pb_sat",
 "description": "Site Acceptance Test - lambda genome resequencing used
to validate new\n PacBio installations",
 "version" : "0.1.0",
 "entryPoints": [
 {
 "entryId": "eid_ref_dataset",
 "fileTypeId": "PacBio.DataSet.ReferenceSet",
 "name": "Entry Name: PacBio.DataSet.ReferenceSet"

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

18

 },
 {
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet",
 "name": "Entry Name: PacBio.DataSet.SubreadSet"
 }
],
 "tags" : ["consensus", "mapping", "reports", "sat"],
 "taskOptions" : [{
 {
 "default": "",
 "description": "Dataset filter string",
 "id": "dataset_filters",
 "name": "Filters to add to the DataSet",
 "optionTypeId": "string"
 },
 {
 "default": 0,
 "description": "Downsampling Factor",
 "id": "downsample_factor",
 "name": "Downsampling Factor",
 "optionTypeId": "integer"
 }
] }

In the above entry, take the value of the pipeline id :cromwell.workflows.

Also, take the Data Set types of entryPoints elements: fileTypeId :
PacBio.DataSet.SubreadSet and fileTypeId : PacBio.DataSet.ReferenceSet. In this
example we use the lambdaNEB reference and example PacBio data that are distributed with SMRT Link.
First check whether they have been imported already:

GET /smrt-link/datasets/subreads/5bd43ef4-6afe-dc62-4f49-03b75a051801

 {
 "name": "lambda/0007_tiny",
 "updatedAt": "2015-10-26T22:54:46.000Z",
 "path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub
/current/private/pacbio/canneddata/lambdaTINY/m150404_101626_42267_c1008079208
00000001823174110291514_s1_p0.subreadset.xml",
 "instrumentControlVersion": "2.3.0.1.142990",
 "tags": "",
 "instrumentName": "42267",
 "uuid": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
 "totalLength": 16865720,
 "projectId": 1,
 "numRecords": 19930,
 "wellSampleName": "Inst42267-040315-SAT-100pM-2kb-P6C4",
 "bioSampleName": "unknown",
 "version": "3.0.1",
 "cellId": "unknown",
 "id": 5,
 "md5": "288d3bdadf83bda41dd7fefc11cad128",
 "importedAt": "2018-07-06T00:45:10.753Z",
 "jobId": 3,
 "createdAt": "2015-10-26T22:54:46.000Z",
 "isActive": true,

 "createdBy": "smrtlinktest",

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

19

 "wellName": "A01",
 "cellIndex": 4,
 "metadataContextId":
"m150404_101626_42267_c100807920800000001823174110291514_s1_p0",

 "numChildren": 0,
 "runName": "lambdaTINY",
 "datasetType": "PacBio.DataSet.SubreadSet",
 "comments": "Inst42267-SAT-100pM-2kbLambda-P6C4-Std120_CPS_040315"

 }
GET /smrt-link/datasets/references/1a369917-507e-4f70-9f38-69614ff828b6
 {
 "name": "lambdaNEB",
 "updatedAt": "2015-10-24T03:32:50.530Z",
 "path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub
/current/private/pacbio/canneddata/referenceset/lambdaNEB/referenceset.xml",
 "ploidy": "haploid",
 "tags": "",
 "uuid": "1a369917-507e-4f70-9f38-69614ff828b6",
 "totalLength": 48502,
 "projectId": 1,
 "numRecords": 1,
 "version": "3.0.1",
 "id": 4,
 "md5": "4861bca63e02aa26c92724febb3299c2",
 "importedAt": "2018-07-06T00:45:10.660Z",
 "jobId": 5,
 "createdAt": "2015-10-24T03:32:50.530Z",
 "isActive": true,
 "createdBy": "smrtlinktest",
 "organism": "lambdaNEB",
 "numChildren": 0,
 "datasetType": "PacBio.DataSet.ReferenceSet",
 "comments": "reference dataset comments"
 }

Build the request body for creating an analysis job for the SAT pipeline. Use the pipeline id obtained
above as the value for the pipelineId element. Use the two Data Set UUIDs as values of the
datasetId fields in the entryPoints array. For example:

{
 "pipelineId" : "cromwell.workflows.pb_sat",
 "entryPoints" : [
 {
 "datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet"
 },
 {
 "datasetId": "1a369917-507e-4f70-9f38-69614ff828b6",
 "entryId": "eid_ref_dataset",
 "fileTypeId": "PacBio.DataSet.ReferenceSet"
 }

],
 "taskOptions" : [],
 "workflowOptions": [],

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

20

 "name": "My SAT Job"
 }

Now create a job of type analysis. Use the request body built above in the following API call:

POST /smrt-link/job-manager/jobs/analysis

Verify that the job was created successfully. The return HTTP status should be 201 Created.

How to Query Job History
The Job Service endpoints provide a number of search criteria (plus paging support) that can be used to
limit the return results. A full list of available search criteria is provided in the the JSON Swagger API
definition for the jobs endpoint. The following search retrieves all failed Site Acceptance Test (SAT)
pipeline jobs:

GET /smrt-link/job-manager/jobs/analysis?state=FAILED&subJobTypeId=cromwell

For most data types, additional operators besides equality are allowed. For example:

GET /smrt-link/job-manager/jobs/analysis?createdAt=lt%3A2019-03-
01T00:00:00.000Z&createdBy=myusername

This retrieves all analysis jobs run before 2019-03-01 by a user with the login ID myusername.

Note: Certain searches, especially partial text searches using like:, may be significantly slower to
execute and can overload the server if performed too frequently.

You can also perform bulk retrieval of jobs using the search endpoint:

POST /smrt-link/job-manager/jobs/analysis/search
 {
 "id": "in:1,2,3,4"
 }

The example above will retrieve jobs 1-4. You may also query on UUID or any other supported search
field.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

21

How to Copy and Rerun a SMRT Link Analysis
The options endpoint for a specific job provides the POST content that ran it:

GET /smrt-link/job-manager/jobs/analysis/<jobId>/options

As is the case for Data Set IDs, either the UUID or the integer ID of the job can be provided. In this case,
as both are generated automatically at job creation time, there is no preference for one or the other.

For example:

GET /smrt-link/job-manager/jobs/analysis/3/options

 {
 "name": "sat_lambda",
 "entryPoints": [
 {
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet",
 "datasetId": 1
 },
 {
 "entryId": "eid_ref_dataset",
 "fileTypeId": "PacBio.DataSet.ReferenceSet",
 "datasetId": 2
 }
],
 "workflowOptions": [],
 "taskOptions": [],

 "pipelineId": "cromwell.workflows.pb_sat"
 }

This data model can be directly POSTed to the analysis job endpoint as described above. Note that in
this case, the datasetId fields are the integer IDs generated by the SMRT Link database backend. You
can retrieve the full Data Set records (including their UUIDs) by using the same Data Set endpoints
described previously, only with the integer IDs instead of UUIDs:
GET /smrt-link/datasets/subreads/1
GET /smrt-link/datasets/references/2

How to Run an Analysis on All Collections in a Run
As explained earlier, each Collection corresponds to a SubreadSet Data Set. To run an analysis on
multiple SubreadSets combined, you can either first run a merge job to generate a single input, or let the
analysis job perform the merge automatically.

For the two-step approach, perform the following steps:

1. As described previously, collect the UUIDs for the Collections in the Run you want to analyse.

2. Check each Collection UUID to make sure the SubreadSet XML has already been imported, and if not,
import it as described above:

GET /smrt-link/datasets/subreads/<UUID>

3. Build a payload using the following model:

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

22

 {
 "datasetType": "PacBio.DataSet.SubreadSet",
 "ids": ["<UUID1>", "<UUID2>", ...],
 "name": "Merge run <runId> collections"
 }

4. Create a merge-datasets job with the request body from Step 3:

POST /smrt-link/job-manager/jobs/merge-datasets

5. Block until this job completes successfully, then retrieve the list of job datastore files. One of these
should be the merged Data Set.

GET /smrt-link/job-manager/jobs/merge-datasets/<ID>/datastore

 [
 {
 "modifiedAt": "2018-07-12T21:38:34.815Z",
 "name": "Auto-merged hdfsubreads @ 1531431514119",
 "fileTypeId": "PacBio.DataSet.SubreadSet",
 "path":
"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/merged.dataset.xml",
 "description": "Merged PacBio DataSet from 4 files",
 "uuid": "f54694da-5985-42b9-9a9e-f2190bd3b4a4",
 "fileSize": 33495,
 "importedAt": "2018-07-12T21:38:35.085Z",
 "jobId": 4,
 "createdAt": "2018-07-12T21:38:34.815Z",
 "isActive": true,
 "jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b",
 "sourceId": "pbscala::merge_dataset"

 },
 {
 "modifiedAt": "2018-07-12T21:38:34.264Z",
 "name": "SMRT Link Job Log",
 "fileTypeId": "PacBio.FileTypes.log",
 "path":
"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/pbscala-job.stdout",
 "description": "SMRT Link Job Log",
 "uuid": "b19fbfc6-0808-40fc-917b-092f369180cd",
 "fileSize": 388,
 "importedAt": "2018-07-12T21:38:34.266Z",
 "jobId": 8767,

 "createdAt": "2018-07-12T21:38:34.264Z",
 "isActive": true,
 "jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b",
 "sourceId": "analysis::master.log"
 }
]

6. You may now follow the steps for running an analysis job, using the new merged SubreadSet as input.

To use the auto-merge capability (introduced in SMRT Link v7.0.0), just submit the analysis job options
with a separate eid_subread entry point for each input Data Set, for example:

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

23

 GET /smrt-link/job-manager/jobs/analysis/3/options
 {
 "name": "sat_lambda",
 "entryPoints": [
 {
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet",
 "datasetId": "<UUID1>"
 },
 {
 "entryId": "eid_subread",
 "fileTypeId": "PacBio.DataSet.SubreadSet",
 "datasetId": "<UUID2>"
 },
 {
 "entryId": "eid_ref_dataset",
 "fileTypeId": "PacBio.DataSet.ReferenceSet",
 "datasetId": "<REF_UUID>"
 }
],
 "workflowOptions": [],
 "taskOptions": [],
 "pipelineId": "cromwell.workflows.pb_sat"
 }

Note that this process is opaque to Cromwell, which does not itself accept multiple inputs with the same
identifier.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

24

How to Delete a SMRT Link Job
To delete a job, you need to create another job of type delete-job, and pass the UUID of the job to
delete in the payload (the request body).

Perform the following steps:

1. Build the payload for the POST request as a JSON with the following fields:

• jobId: The UUID of the job to be deleted.

• removeFiles: A boolean flag specifying whether to remove files associated with the job being
deleted.

• dryRun: A boolean flag to check whether it is safe to delete the job prior to actually deleting it.

Note: To make sure that it is safe to delete the job (that is, there is no other piece of data dependent
on the job being deleted), then first set the dryRun field to true and perform the API call described in
Step 2 below. If the call succeeds, meaning that the job can be safely deleted, set the dryRun field to
false and repeat the same API call again, as described in Step 3 below.

2. Check whether the job can be deleted, without actually changing anything in the database or on disk.

Create a job of type delete-job with the payload which has dryRun = true; use the POST
request with the following endpoint:

POST /smrt-link/job-manager/jobs/delete-job

3. If the previous API call succeeded, that is, the job may be safely deleted, then proceed with actually
deleting the job.

Create a job of type delete-job with the payload which has dryRun = false; use the POST
request with the following endpoint:

POST /smrt-link/job-manager/jobs/delete-job

Suppose you want to delete the job with UUID = 13957a79-1bbb-44ea-83f3-6c0595bf0d42. Define the
payload as in the following example, and set the dryRun field to true:

 {
 "jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
 "removeFiles" :true,
 "dryRun" : true
 }

Create a job of type delete-job, using the above payload in the following POST request:

POST /smrt-link/job-manager/jobs/delete-job

Verify that the response status is 201: Created.

Also notice that the response body contains JSON corresponding to the job to be deleted, as in the
following example:

 {
 "name" : "Job merge-datasets",
 "uuid" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
 "jobTypeId" : "merge-datasets",
 "id" : 53,
 "createdAt" : "2016-01-29T00:09:58.462Z",

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

25

 ...
 "comment" : "Merging Datasets
MergeDataSetOptions(PacBio.DataSet.SubreadSet, Auto-merged subreads
@1454026198403)"
 }

Define the payload as in the following example, and this time set the dryRun field to false, to actually
delete the job:

 {
 "jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
 "removeFiles" : true,
 "dryRun" : false
 }

Create a job of type delete-job, using the above payload in the following POST request:

POST /smrt-link/job-manager/jobs/delete-job

Verify that the response status is 201: Created. Notice that this time the response body contains JSON
corresponding to the job of type delete-job, as in the following example:

 {
 "name" : "Job delete-job",
 "uuid" : "1f60c976-e426-43b5-8ced-f8139de6ceff",
 "jobTypeId" : "delete-job",
 "id" : 7666,
 "createdAt" : "2017-03-09T11:51:38.828-08:00",
 ...
 "comment" : "Deleting job 13957a79-1bbb-44ea-83f3-6c0595bf0d42"
 }

Clients should then block until the job is complete.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

26

How to Create and Manipulate a Project
By default, all Data Sets and analyses are part of a "General Project" with global permissions. Creating
new projects lets you organize related Data Sets and jobs and optionally restrict access to specific users
using the SMRT Link UI. (Note:This is only enforced in the UI itself; the REST services do not currently
restrict users to specific projects.)
The Projects service requires user credentials, which typically means going through the WSO2 server as
described in How WSO2 Authentication Works. Following is an example of how to create a project that
contains two Data Sets and includes three users with varying levels of access:

 POST /SMRTLink/1.0.0/smrt-link/projects
 {
 "name": "Human Structural Variation",
 "description": "Human SV datasets and analyses",
 "state": "CREATED",
 "datasets": [
 {"id": 34},
 {"id": 45}
],
 "members": [
 {"login": "user1", "role": "OWNER"},
 {"login": "user2", "role": "CAN_EDIT"},
 {"login": "collaborator1", "role": "CAN_VIEW"}
],
 }

The server will return the newly-created project including the integer ID that should be used in subsequent
requests:

 {
 "id": 2,
 "name": "Human Structural Variation",
 "description": "Human SV datasets and analyses",
 "state": "CREATED",
 "createdAt": "2020-06-01T11:51:38.828-08:00",
 "updatedAt": "2020-06-01T11:51:38.828-08:00",
 "isActive": true,
 "grantRoleToAll": null,
 "datasets": [
 {"id": 34},
 {"id": 45}
],
 "members": [
 {"login": "user1", "role": "OWNER"},
 {"login": "user2", "role": "CAN_EDIT"},
 {"login": "collaborator1", "role": "CAN_VIEW"}
]
 }

If you do not want to manage user permissions individually, the field grantRoleToAll grants global
access to the project if non-null.

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

27

You can retrieve details for a specific project by appending the integer ID to the URL, thus:

 GET /SMRTLink/1.0.0/smrt-link/projects/2
 {
 "id": 2,
 "name": "Human Structural Variation",
 ...
 }

To update project details, send a PUT request to this same URL with the modified version of the data
model used to create the project. Use DELETE to soft-delete the project and reassign all of its Data Sets
and jobs to the “General Project”.
Once you have a project ready to work with, any new job can be added to that project by overriding the
projectId field to the job data model (the default is 1, the "General Project"). You may also add a
projectId query argument when retrieving lists of jobs or Data Sets to filter the list to members of the
specified project.

How to Retrieve Mapping Report Metrics From an Analysis
Job
The jobs API provides an endpoint to retrieve report files:

 GET /smrt-link/job-manager/jobs/analysis/1001/reports

 [
 {
 "dataStoreFile": {
 "modifiedAt": "2020-12-07T10:14:03.121Z",
 "name": "Report mapping_stats_ccs",
 "fileTypeId": "PacBio.FileTypes.JsonReport",
 "path": "/data/smrtlink/jobs-root/cromwell-
executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call-
mapping_stats/execution/mapping_stats.report.json",
 "description": "PacBio Report mapping_stats_ccs (a7d394be-9a9a-457a-
b0ad-5d41a21a460b)",
 "uuid": "a7d394be-9a9a-457a-b0ad-5d41a21a460b",
 "fileSize": 7459,
 "importedAt": "2020-12-07T10:14:46.635Z",
 "createdAt": "2020-12-07T10:14:03.121Z",
 "isActive": true,
 "sourceId": "pb_align_ccs.report_mapping_stats"
 },
 "reportTypeId": "pb_align_ccs.report_mapping_stats"
 },
 {
 "dataStoreFile": {
 "modifiedAt": "2020-12-07T10:14:12.639Z",
 "name": "Report coverage",
 "fileTypeId": "PacBio.FileTypes.JsonReport",
 "path": "/data/smrtlink/jobs-root/cromwell-
executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call-

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

28

coverage_reports/coverage_reports/408518ac-80e5-4f48-9185-ed1b51fe43c6/call-
pbreports_coverage/execution/coverage.report.json",
 "description": "PacBio Report coverage (52adc5b2-b1b9-4e27-9ae4-
94de2a525b1e)",
 "uuid": "52adc5b2-b1b9-4e27-9ae4-94de2a525b1e",
 "fileSize": 2596,
 "importedAt": "2020-12-07T10:14:46.635Z",
 "createdAt": "2020-12-07T10:14:12.639Z",
 "isActive": true,
 "sourceId": "pb_align_ccs.report_coverage"
 },
 "reportTypeId": "pb_align_ccs.report_coverage"
 }
]

For workflows that produce a mapping report, it will typically have a reportTypeId of the form
workflow_id.report_mapping_stats, in this case pb_align_ccs.report_mapping_stats. We
can then retrieve the full report by adding the UUID to the URL:

 GET /smrt-link/job-manager/jobs/analysis/1001/reports/a7d394be-9a9a-457a-
b0ad-5d41a21a460b

 {
 "version": "1.0.1",
 "id": "mapping_stats_ccs",
 "_comment": "Generated with pbcommand version at 2020-12-
07T02:14:03.119926",
 "title": "Report mapping_stats_ccs",
 "attributes": [
 {
 "id": "mapping_stats_ccs.blast_identity",
 "name": "Mean Concordance (mapped)",
 "value": 0.8919674526217451
 },
 ...
]
 }

In SMRT Link v10.1 and later blast_identity is the metric displayed as Mean Concordance
(mapped) in the SMRT Link UI (after converting to a percentage value). This Python snippet shows an
alternative approach to retrieving several metrics like this from the report JSON file, bypassing the final
API call:

.. code-block:: python

 import os.path
 from pbcommand.pb_io import load_report_from_json

 def get_mapping_metrics(report_file):
 report = load_report_from_json(report_file)
 keys = {"blast_identity", "mapped_reads_n", "mapped_readlength_mean"}
 return {a.id:a.value for a in report.attributes if a.id in keys}

 Sequel Systems SMRT Link Web Services API Use Cases v10.1

29

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2018 - 2021, Pacific
Biosciences of California, Inc. All rights reserved. Information in this document is subject to change without
notice. Pacific Biosciences assumes no responsibility for any errors or omissions in this document. Certain
notices, terms, conditions and/or use restrictions may pertain to your use of Pacific Biosciences products
and/or third party products. Please refer to the applicable Pacific Biosciences Terms and Conditions of
Sale and to the applicable license terms at http://www.pacb.com/legal-and-trademarks/product-license-
and-use-restrictions/.

Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq and Sequel are
trademarks of Pacific Biosciences. FEMTO Pulse and Fragment Analyzer are trademarks of Agilent
Technologies Inc. All other trademarks are the sole property of their respective owners.

See https://github.com/broadinstitute/cromwell/blob/develop/LICENSE.txt for Cromwell redistribution
information.

P/N 102-040-300 Version 01 (April 2021)

http://www.pacb.com/legal-and-trademarks/product-license-and-use-restrictions/
http://www.pacb.com/legal-and-trademarks/product-license-and-use-restrictions/
https://github.com/broadinstitute/cromwell/blob/develop/LICENSE.txt

	Introduction
	Connecting to the SMRT Link Services API Securely
	How WSO2 Authentication Works
	SSL Security Features
	Python Example
	How to Set Up a Run in Run Design
	How to Get Recent Runs
	How to Monitor the Progress of a SMRT Link Run
	How to Run Jobs Using Services
	How to Import a Completed Collection (Data Set)
	Searching for a Data Set
	How to Capture Run-Level Summary Metrics
	How to Get SMRT Link Data Set Reports by Using the UUID
	How to Get QC Reports for a Specific Collection
	How to Get QC Reports for a Specific SMRT Link Run
	How to Set up a SMRT Link Analysis Job for a Specific Workflow
	How to Query Job History
	How to Copy and Rerun a SMRT Link Analysis
	How to Run an Analysis on All Collections in a Run
	How to Delete a SMRT Link Job
	How to Create and Manipulate a Project
	How to Retrieve Mapping Report Metrics From an Analysis Job

