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Introduction 
The SMRT Link Web Services API, provided by Pacific Biosciences, allows integration of SMRT Link with 
third-party software. It is also used for accessing features such as designing and performing quality control 
on instrument runs, querying new data from the instrument, and starting analyses on the sequence data. 

This document describes common tasks performed using the SMRT Link Web Services API and provides 
"how to" recipes for accomplishing these tasks. To accomplish a task, you usually need to perform several 
API calls; the document describes the order of these calls. 

As an example of a real-world workflow, most of the examples below roughly correspond to what happens 
internally when a Site Acceptance Test is run on Sequel Systems using SMRT Link, starting from run design 
and finishing with the analysis pipeline. 

Note: For clarity, all of the API examples in this document use the unauthenticated, insecure 
endpoints. In a default SMRT Link installation, these are available from localhost on port 9091. If you 
are connecting from a remote host and/or you require SSL or authentication, you will instead go through the 
WSO2 API Manager layer, which uses port 8243 and adds the prefix /SMRTLink/1.0.0. For example, 
with default installer settings, these two URLs refer to the same endpoint (assuming that the SMRT Link 
server is running on localhost): 

http://localhost:9091/smrt-link/datasets/subreads 
https://servername.serverdomain:8243/SMRTLink/1.0.0/smrt-link/datasets/subreads 
 

The next section explains these connections and provides programmatic examples. For other detailed 
information on the SMRT Link Web Services API calls, see  
https://<SMRTLinkServername>:8243/sl/docs/services/ 

where <SMRTLinkServername>:8243 is the name and port number of your local SMRT Link server. 

 

Connecting to the SMRT Link Services API Securely 
SMRT Link v10.1 restricts access to the services port (Default = 9091) to clients running on localhost or 
connecting via the secure (HTTPS) WSO2 API Manager on port 8243, with authentication credentials. 

If you only connect from localhost, the existing clients will continue to work as long as you specify 
localhost or 127.0.0.1 and not the full host/domain name. If you are running any external database or 
automation programs that connect to the SMRT Link API, this section describes how to adapt your code to 
v10.1. 

Please use caution when embedding user credentials in shell scripts or source code, as this may 
expose them in log files or shell history. We recommend that automated clients such as LIMS systems 
use a special-purpose account with limited or no system login access. For example, the SMRT Link v10.1 
installation process automatically creates a user in WSO2 for the Sequel Systems to use when connecting. 
Since this user is only known to WSO2, it cannot be used for any purpose other than connecting to the 
SMRT Link API. 
 

How WSO2 Authentication Works 
Secure API access requires passing encoded authentication credentials in the HTTP header, with a slightly 
different endpoint URL. This is a two-step process: First the client requests an access token using the 
provided user name and password, then connects to the API endpoint using the access token. The token 
remains good for up to two hours (7200 seconds), but several caveats about token expiry are discussed 
below. 
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To connect to a secure API endpoint, follow this procedure, replacing <servername> with the fully-qualified 
domain name: 
 

1. POST a request to https://<servername>:8243/token with these HTTP headers: 
 

Content-Type: application/x-www-form-urlencoded 
Authorization: Basic 
S01MejVnN2ZibXg4UlZGS0tkdTBOT3JKaWM0YTo2TmpSWEJjRmZMWk93SGMwWGxpZGl6NHl3Y3Nh 

and this content, replacing <user> and <password> with the actual credentials: 
 
{ 
  "grant_type": "password", 
  "username": "<user>", 
  "password": "<password>", 
  "scope": "welcome run-design run-qc openid analysis sample-setup data-
management userinfo" 
} 

The "Basic" authorization identifies the client to WSO2; for convenience we use hard-coded client 
registration credentials in SMRT Link and the pbservice clients, shown above. (The string passed 
here is a base-64 encoding of combined user and password strings.) 

The client response looks something like this (the id_token string can be ignored and is omitted here 
for clarity): 
 
{ 
  'access_token': '05649edd-9b67-3754-9e5c-5347cdedbf99', 
  'id_token': '<id_token>', 
  'expires_in': 6272, 
  'token_type': 'Bearer', 
  'scope': 'analysis data-management openid run-design run-qc userinfo', 
  'refresh_token': '121e02f9-3083-3a3e-b126-547e344769bd' 
} 

2. Perform the API client call. The URL must now include the prefix /SMRTLink/1.0.0, and use HTTPS 
port 8243. For example, these calls are equivalent: 
 
GET http://localhost:9091/status 
GET https://servername:8243/SMRTLink/1.0.0/status 

Also note that all service endpoints that were originally prefixed with /secondary-analysis now 
need to use /smrt-link instead, for example: 

GET http://localhost:9091/secondary-analysis/datasets/subreads 

now becomes: 

GET https://servername:8243/SMRTLink/1.0.0/smrt-link/datasets/subreads 

These HTTP headers are required, replacing <access_token> with the field from the response in Step 
1: 
 
Content-type: application/json 
Authorization: Bearer <access_token> 
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3. The access token remains valid for the duration specified by expires_in (in seconds). In practice we 
find it safest to refresh sooner than this to avoid clock skew issues. You can use the refresh token to 
request a new access_token instead passing the user/password credentials: 
 
{ 
  "grant_type": "refresh_token", 
  "refresh_token": "<refresh_token>" 
} 

This is posted to the same /token endpoint as in Step 1, with the same headers. Note however that if 
you have multiple clients running simultaneously, the refresh mechanism will effectively lead to 
a race condition, therefore re-authenticating each time is recommended if the clients are  
running for longer than the expiry time. 

4. You can revoke an access token by POSTing to /revoke: 
 
POST https://servername:8243/revoke 
 
Use the same headers as Step 1, and this body: 
 
{ 
  "token": "<access_token>", 
  "token_type_hint": "access_token" 
} 
 
This is what the logout button in SMRT Link does. (It is not, however, necessary for non-browser client 
applications.) 

As a compact practical example, these Linux commands show how to use the secure API with the curl and 
jq utilities: 
 
AUTH_TOKEN=$(curl -k -s --user KMLz5g7fbmx8RVFKKdu0NOrJic4a:6NjRXBcFfLZOwHc0Xlidiz4ywcsa 
-d 
"grant_type=password&username=$API_USER&password=$API_PASS&scope=sample-setup+run-
design+run-qc+data-management+analysis+userinfo+openid" 
https://servername:8243/token | jq -r .access_token) 
 
curl -k -s -H "Authorization: Bearer $AUTH_TOKEN" 
https://servername:8243/SMRTLink/1.0.0/status 

Here the API_USER and API_PASS variables should contain the actual user credentials; again, please use 
caution when passing sensitive authentication information. Note that curl internally converts the hard-
coded --user credentials to the appropriate basic authorization header, and also sets the Content-Type 
header automatically. 

 

SSL Security Features 
 
The full SSL/HTTPS implementation includes several checks designed to prevent "man-in-the-middle" 
attacks by hackers, including the reliance on central certificating authorities to sign SSL keys, which are also 
tied to specific host names. The default SMRT Link installation uses a generic "self-signed" certificate that 
can optionally be replaced with a user-provided official certificate for that site. If this is not done, or if you 
encounter other problems with SSL security features, you may need to disable these features. This does not 
eliminate encryption or authentication, but it is generally discouraged by HTTP client libraries and tools. For 
example in the shell commands shown in the previous section, the -k flag tells curl to disable SSL 
certificate verification. 
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Python Example 
The following source code provides a complete working example of a simple authenticated client call using 
only the Python 3.7 standard library plus the request module, equivalent to the curl commands above: 

 

class Wso2Constants(object): 

    # These client registration credentials are valid for every SMRT Link 

    # server (and are also used by the SL UI) 

    SECRET = "KMLz5g7fbmx8RVFKKdu0NOrJic4a" 

    CONSUMER_KEY = "6NjRXBcFfLZOwHc0Xlidiz4ywcsa" 

    SCOPES = ["welcome", "run-design", "run-qc", "openid", "analysis", 

              "sample-setup", "data-management", "userinfo"] 

 

def _create_auth(secret, consumer_key): 

    return base64.b64encode(":".join([secret, consumer_key]).encode("utf-8")) 

 

def _get_token(url, user, password, scopes, secret, consumer_key): 

    basic_auth = _create_auth(secret, consumer_key).decode("utf-8") 

    headers = { 

        "Authorization": "Basic {}".format(basic_auth), 

        "Content-Type": "application/x-www-form-urlencoded" 

    } 

    scope_str = " ".join({s for s in scopes}) 

    payload = dict(grant_type="password", 

                   username=user, 

                   password=password, 

                   scope=scope_str) 

    # verify is false to disable the SSL cert verification 

    return requests.post(url, payload, headers=headers, verify=False) 

 

def get_smrtlink_wso2_token(user, password, url): 

    r = _get_token(url, user, password, Wso2Constants.SCOPES, Wso2Constants.SECRET, 
Wso2Constants.CONSUMER_KEY) 

    r.raise_for_status() 

    j = r.json() 

    access_token = j['access_token'] 

    refresh_token = j['refresh_token'] 

    scopes = j['scope'].split(" ") 

    return access_token, refresh_token, scopes 

 

def _to_headers(access_token): 

    return { 

        "Authorization": "Bearer {}".format(access_token), 

        "Content-type": "application/json" 

    } 

 

def _get_endpoint(api_path, access_token): 

    api_url = "https://{h}:8243/SMRTLink/1.0.0{p}".format(h=host, p=api_path) 

    headers = _to_headers(access_token) 
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    # verify=False disables SSL verification 

    response = requests.get(api_url, headers=headers, verify=False) 

    response.raise_for_status() 

    return response.json() 

 

def get_status(hostname, user, password): 

    token_url = "https://{h}:8243/token".format(h=host) 

    access_token, refresh_token, scopes = get_smrtlink_wso2_token(user, password, 
token_url) 

    return _get_endpoint("/status", access_token) 
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How to Set Up a Run in Run Design 
To set up a Run Design, perform the following steps: 

1. Prepare the Run Design information in an XML file. The XML file should correspond to the 
PacBioDataModel.xsd schema. 

2. Create the Run Design by using the POST request with the following endpoint: 

POST /smrt-link/runs 

The payload (request body) for this POST request is a JSON string with the following fields: 

• dataModel: The serialized XML containing the Run Design information. 
• name: The name of the run. 
• summary: A short description of the run. 

 

Example: Create a Run Design using the following API call: 
POST /smrt-link/runs 

Use the payload as in the following example: 
 
{ 
  "dataModel" : "https://smrtlink-alpha-
nightly.nanofluidics.com:8243/sl/docs/xsd-datamodels/PacBioDataModel.xsd", 
  "name" : "54001_SAT", 
  "summary" : "SAT" 
} 
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How to Get Recent Runs 
To get recent runs, perform the following steps: 

1. Get the list of all runs by using the GET request with the following endpoint: 

GET /smrt-link/runs 

2. Filter the response based on the value of the createdAt field. For example: 

"createdAt": "2016-12-13T19:11:54.086Z" 

Note: You may also search runs based on specific criteria, such as reserved state, creator, or summary 
substring. 

Example: Find all runs created on or after 01.01.2017 
First, get the list of all runs: 

GET /smrt-link/runs 

The response is an array of run objects, as in the following example: (Some fields are removed for display 
purposes.) 
 
   [ 
       { 
           "name" : "54001_SAT", 
           "uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0", 
           "createdAt" : "2016-11-08T17:50:57.955Z", 
           "summary" : "SAT run" 
       }, 
       { 
           "name" : "54001_ecoli_15k", 
           "uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15", 
           "createdAt" : "2017-01-20T16:08:41.610Z", 
           "summary" : "E. coli assembly" 
       }, 
       { 
           "name" : "54001_hla_amplicons", 
           "uniqueId : "5026afad-fbfa-407a-924b-f89dd019ca9f", 
           "createdAt" : "2017-01-21T00:21:52.534Z", 
           "summary" : "Human HLA" 
       } 
   ] 

Now, search the above response for all run objects whose createdAt field starts with the 2017-01 
substring. In the above example, you will get two runs that fit your criteria (that is, created on or after 
01.01.2017): 

• Run with "name" equal to "54001_ecoli_15k", 
• Run with "name" equal to "54001_hla_amplicons". 
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How to Monitor the Progress of a SMRT Link Run 
Run progress can be monitored by looking at the completion status of each Collection associated with that 
run. Perform the following steps: 

1. If you do not have the Run UUID, retrieve it as described in Step 1 of How to Get Recent Runs. 

2. Once you have the Run UUID, get all Collections that belong to the run. Use the Run UUID in the GET 
request with the following endpoint: 

GET /smrt-link/runs/{runUUID}/collections 

The response contains the list of all Collections of that run. 

3. Monitor Collection status to see when all Collections are complete. 

Until all Collections of the run have the field status set to Complete, repeat the GET request with the 
following endpoint: 

GET /smrt-link/runs/{runUUID}/collections 

You may also monitor each Collection individually. 

Use the Collection UUID in the GET request with the following endpoint: 

GET /smrt-link/runs/{runUUID}/collections/{collectionUUID} 

4. To monitor run progress using QC metrics as well, do this at the Collection level, for each Collection that 
belongs to this run. For instructions, see How to Get QC Reports for a Specific Collection. 

The full set of QC metrics for a Collection will be available only when the Collection is complete. Monitor 
the completion status of each Collection and, for each complete Collection, check its QC metrics. QC 
metrics of all Collections that belong to the run will let you evaluate the overall success of the run. 

Example 
To monitor the run with Name = 54001_DryRun_2Cells_20161219, use the following steps: 

1. Get the list of all runs as described in the previous section. 

GET /smrt-link/runs 

The response is an array of run objects, as in the following example: (Some fields are removed for 
display purposes.) 
 

  [ 
      { 
          "name" : "54001_SAT", 
          "uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0", 
          "createdAt" : "2016-11-08T17:50:57.955Z", 
          "summary" : "SAT run" 
      }, 
      { 
          "name" : "54001_ecoli_15k", 
          "uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15", 
          "createdAt" : "2017-01-20T16:08:41.610Z", 
          "summary" : "E. coli assembly" 
      }, 
      { 
          "name" : "54001_hla_amplicons", 
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          "uniqueId" : "5026afad-fbfa-407a-924b-f89dd019ca9f", 
          "createdAt" : "2017-01-21T00:21:52.534Z", 
          "summary" : "Human HLA" 
      } 
  ] 

2. Search the above response for the object with the name field equal to 54001_SAT. 

From the above example, you will get the run object with the uniqueId field equal to a836efbc-
fd58-40f6-b586-43c743730fe0. 

3. With this Run UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all Collections that belong to 
this run: 

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-43c743730fe0/collections 

The response is an array of Collection objects of this run, as in the following example: 
 
   [{ 
       "name" : "54001_SAT_1stCell", 
       "instrumentName" : "Sequel", 
       "context" : "m54001_161219_161247", 
       "well" : "A01", 
       "status" : "Complete", 
       "instrumentId" : "54001", 
       "startedAt" : "2016-12-19T16:12:47.014Z", 
       "uniqueId" : "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b", 
       "collectionPathUri" : "/data/sequel/r54001_20161219_160902/1_A01", 
       "runId" : "a836efbc-fd58-40f6-b586-43c743730fe0", 
       "movieMinutes" : 120 
   }, { 
       "name" : "54001_SAT_2ndCell", 
       "instrumentName" : "Sequel", 
       "context" : "m54001_161219_184813", 
       "well" : "B01", 
       "status" : "Ready", 
       "instrumentId" : "54001", 
       "startedAt" : "2016-12-19T16:12:47.014Z", 
       "uniqueId" : "08af5ab4-7cf4-4d13-9bcb-ae977d493f04", 
       "collectionPathUri" : "/data/sequel/r54001_20161219_160902/2_B01", 
       "runId" : "a836efbc-fd58-40f6-b586-43c743730fe0", 
       "movieMinutes" : 120 
   } 
   ] 

In the above example, the first Collection has status of Complete. 

You can take its UUID, i.e. uniqueId: 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b, and get its 
QC metrics. For instructions, see How to Get QC Reports for a Specific Collection. 

The second Collection has a status of Ready. 

You can take its UUID, i.e. uniqueId: 08af5ab4-7cf4-4d13-9bcb-ae977d493f04, and monitor 
its status until it becomes Complete. To do do, use the following API call: 

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-
43c743730fe0/collections/08af5ab4-7cf4-4d13-9bcb-ae977d493f04 

Once this Collection becomes complete, you can get its QC metrics as well. 
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How to Run Jobs Using Services 
SMRT Link runs several different types of "jobs" which consist of tasks that may take an arbitrarily long 
time to run and are therefore executed asynchronously. To view a list of supported job types, enter: 

GET /smrt-link/job-manager/job-types 

 
  [ 
    { 
      "jobTypeId": "db-backup", 
      "description": "Create a DB backup of the SMRT Link system", 
      "isQuick": true, 
      "isMultiJob": false 
    }, 
    { 
      "jobTypeId": "delete-datasets", 
      "description": "(Soft) delete of PacBio DataSet XML", 
      "isQuick": true, 
      "isMultiJob": false 
    }, 
    ... 
  ] 

Note: "Quick" jobs (generally taking less than a minute) have their own queue, separate from analysis jobs 
and other I/O intensive tasks. 

Creating a job follows this pattern: 

POST /smrt-link/job-manager/jobs/<jobTypeId> 

The request body varies depending on job type, from a single path field to more complex data types, 
several examples of which are described below. The server should respond with 201: Created and the 
model for the new job: 
 
  { 
    "name": "import-dataset", 
    "updatedAt": "2018-06-19T21:13:31.047Z", 
    "workflow": "{}", 
    "path": "/smrtlink/userdata/jobs_root/000/000001", 
    "state": "CREATED", 
    "tags": "", 
    "uuid": "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b", 
    "projectId": 1, 
    "jobTypeId": "import-dataset", 
    "id": 1, 
    "smrtlinkVersion": "6.0.0.SNAPSHOT38748", 
    "comment": "Description for job Import PacBio DataSet", 
    "createdAt": "2018-06-19T21:13:31.047Z", 
    "isActive": true, 
    "createdBy": null, 
    "isMultiJob": false, 
    "jsonSettings": 
"{\"path\":\"/data/sequel/r54001_20161219_160902/1_A01/m54001_20161219_170101. 
 
subreadset.xml\",\"datasetType\":\"PacBio.DataSet.SubreadSet\",\"submit\":true}", 
 
    "jobUpdatedAt": "2018-06-19T21:13:31.047Z", 
  } 

Client code should now block until the job is complete, which should result in the state field changing to 
SUCCESSFUL if all goes well.  
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Note: Blocking mean that the client will poll for the server to complete a Job. When the system is under 
minimal load, blocking can be used instead of manually polling for the job to complete. High-computational 
situations, such as a large FASTA file conversion, are not appropriate for blocking. 

 

How to Import a Completed Collection (Data Set) 
Once a run is complete and the data have been transfered off the instrument, the resulting Data Set(s) can 
be imported into SMRT Link. This creates an import-dataset job that runs asynchronously and 
generates several reports used to assess run quality. 

To import a Data Set, use this API call: 

POST /smrt-link/job-manager/jobs/import-dataset 

The request body in this case is very simple: 
 { 
  "path": 
"/data/sequel/r54001_20161219_160902/1_A01/m54001_20161219_170101.subreadset.xml" 
 } 

The server should respond with 201: Created and the model for the new job; it should only take several 
minutes at most for the import job to complete. 

Note that the same import-dataset job type is also used to import other Data Set types such as the 
ReferenceSet XML used to run the SAT pipeline. 

 

Searching for a Data Set 
The Data Set retrieval endpoints support a number of search operators that may be included as CGI 
parameters: 
 
GET /smrt-link/datasets/subreads?name=human 
 
String fields use case-insensitive partial matching, so this will retrieve all Data Sets whose names include 
human in any combination of upper and lower case. 
 
You can also retrieve a selection of Data Sets by posting a search query with a list of UUIDs: 
 
POST /smrt-link/datasets/subreads 
  { 
    "uuid": "in:7cf74b62-c6b8-431d-b8ae-7e28cfd8343b,a836efbc-fd58-40f6-b586-
43c743730fe0" 
  } 
 
Note: The list needs to start with in: to tell the search API to find values from a list. 
 

How to Capture Run-Level Summary Metrics 
Run-level summary metrics are captured in the QC reports. See the following sections: 

• How to Get QC Reports for a Specific SMRT Link Run. 

• How to Get QC Reports for a Specific Collection. 
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How to Get SMRT Link Data Set Reports by Using the UUID 
To get reports for a Data Set, given the Data Set UUID, perform the following steps: 

1. Determine the Data Set type from the list of available types. Use the GET request with the following 
endpoint: 

GET /smrt-link/dataset-types 

2. Get the corresponding Data Set type string. The Data Set type is in the shortName field. 

3. Get reports that correspond to the Data Set. Given the Data Set UUID and the Data Set type, use them 
in the GET request with the following endpoint: 

GET /smrt-link/datasets/{datasetType}/{datasetUUID}/reports 

Example: 
To get reports associated with a subreadset with UUID = 146338e0-7ec2-4d2d-b938-11bce71b7ed1, 
perform the following steps: 

Use the GET request with the following endpoint: 

GET /smrt-link/dataset-types 

You see that the shortName of SubreadSets is subreads. The desired endpoint is: 

/smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports 

Use the GET request with this endpoint to get reports that correspond to the SubreadSet with  
UUID = 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b: 

GET /smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports 

Once you have the UUID for an individual report, download it using the datastore files service with the 
uuid field: 

GET /smrt-link/datastore-files/519817b6-4bfe-4402-a54e-c16b29eb06eb/download 
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How to Get QC Reports for a Specific Collection 
For completed Collections, the Collection UUID is the same as the UUID of the SubreadSet for that 
Collection. To retrieve the QC reports of a completed Collection, given the Collection UUID, perform the 
following steps: 

1. Get the QC reports that correspond to this Collection by using the GET request with the following 
endpoint: 

GET /smrt-link/datasets/subreads/{collectionUUID}/reports 

See How to Get SMRT Link reports for Data Sets by Using the UUID for more details. 

Note: Obtaining Data Set reports based on the Collection UUID as described above will only work if the 
Collection is complete. If the Collection is not complete, then the SubreadSet does not exist yet. 

 

How to Get QC Reports for a Specific SMRT Link Run 
To get QC reports for a specific run, given the run Name, perform the following steps: 

1. Get the list of all runs by using the GET request with the following endpoint: 

GET /smrt-link/runs 

In the response, perform a text search for the run name: Find the object whose name field is equal to 
the run name, and get the Run UUID, which is found in the uniqueId field. 

2. Get all Collections that belong to this run by using the Run UUID found in the previous step in the GET 
request with the following endpoint: 

GET /smrt-link/runs/{runUUID}/collections 

3. Take a Collection UUID of one of Collection objects received in the previous response. The Collection 
UUIDs are in the uniqueId fields. 

For complete Collections, the Collection UUID is the same as the UUID of the SubreadSet for that 
Collection. 

Make sure that the Collection whose uniqueId field you take has the field status set to Complete. 
This is because obtaining Data Set reports based on the Collection UUID as described below will only 
work if the Collection is complete. If the Collection is not complete, the SubreadSet does not exist yet. 

You can now retrieve the QC reports that correspond to this Collection as described in How to Get 
SMRT Link Reports for Data Sets by Using the UUID. 

4. Repeat Step 3 to download QC reports for all complete Collections of that run. 

Example 
You view the Run QC page in SMRT Link, and open the page of a run with a status of Complete. Take the 
run name and look for the Run UUID in the list of all runs, as described above. 

Note: The Run ID also appears in the {runUUID} path parameter of the SMRT Link UI URL: 

http://SMRTLinkServername.domain:9090/#/run-qc/{runUUID} 

So the shorter way would be to take the Run UUID directly from the URL, such as 

http://SMRTLinkServername.domain:9090/#/run-qc/a836efbc-fd58-40f6-b586-43c743730fe0 
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With this Run UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all Collections that belong to this run: 

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-43c743730fe0/collections 

Take a UUID of a completed Collection, such as uniqueId: 59230aeb-a8e3-4b46-b1b1-
24c782c158c1. With this Collection UUID, retrieve QC reports of the corresponding SubreadSet: 

GET /smrt-link/datasets/subreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports 

Take a UUID of some report, such as uuid: 00c310ab-e989-4978-961e-c673b9a2b027. With this 
report UUID, download the corresponding report file: 

GET /smrt-link/datastore-files/00c310ab-e989-4978-961e-c673b9a2b027/download 

Repeat the last two API calls until you download all desired reports for all complete Collections. 

 

How to Set up a SMRT Link Analysis Job for a Specific 
Workflow 
Note to users of SMRT Link v7.0.0 or earlier: The analysis engine (pbsmrtpipe) was replaced in 
SMRT Link v8.0 with Cromwell, developed by the Broad Institute, and the names of workflows and 
options have changed significantly. The data model remains the same, as does most of the services API 
(aside from the change of job type ID). Please see SMRT Tools Reference Guide for details about 
Cromwell changes. Note that for backwards compatibility, the terms "pipeline" and "workflow" are used 
interchangeably when referring to specific applications. 

To create an analysis job for a specific workflow, you need to create a job of type analysis with the 
payload based on the template of the desired pipeline. Perform the following steps: 

1. Get the list of all pipeline templates used for creating analysis jobs: 

GET /smrt-link/resolved-pipeline-templates 

2. In the response, search for the name of the specific pipeline to set up. Once the desired template is 
found, note the values of the pipeline id and entryPoints elements of that template. 

3. Identify the Data Set(s) you want to use to run the analysis, and make note of the UUID(s). 

4. For each entry point, find the corresponding record in the dataset-types endpoint, and extract the 
shortName field: 

GET /smrt-link/dataset-types 

5. For each input Data Set, check whether a record already exists at the appropriate Data Set endpoint, 
and if one does not, it should be imported as described above. The Data Set endpoints take this form: 

GET /smrt-link/datasets/<shortName>/UUID 

6. Build the request body for creating a job of type analysis. The basic structure looks like this: 
 

   { 
       "entryPoints": [ 
           { 
               "datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801", 
               "entryId": "eid_subread", 
               "fileTypeId": "PacBio.DataSet.SubreadSet" 
           }, 
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           { 
               "datasetId": "1a369917-507e-4f70-9f38-69614ff828b6", 
               "entryId": "eid_ref_dataset", 
               "fileTypeId": "PacBio.DataSet.ReferenceSet" 
           } 
       ], 
       "name": "Lambda SAT job", 
       "pipelineId": "cromwell.workflows.pb_sat", 
 
       "taskOptions": [], 
       "workflowOptions": [] 
   } 

Use the pipeline id found in Step 2 as the value for the pipelineId element. 

Use Data Set types of the entryPoints array found in Step 1 and corresponding Data Set IDs found 
in Step 2 as the values for elements of the entryPoints array. 

The Data Set IDs may be provided either as UUIDs (which are specified by the XML file and are 
independent of the server used) or integer IDs (which are generated by the server when the Data Sets 
are imported). In most cases the UUIDs will be easier to work with as they are known in advance. 

Note that the taskOptions array is optional and may be completely empty in the request body. 
(workflowOptions is not only optional but the contents are ignored by the server.) 

7. Create a job of type analysis. Use the request body built in the previous step in the POST request 
with the following endpoint: 

POST /smrt-link/job-manager/jobs/analysis 

8. You may monitor the state of the job created in Step 6 with the following request: 

GET /smrt-link/job-manager/jobs/analysis/{jobID}/events 

where jobID is equal to the value received in the id element of the response in Step 6. 

Example 
Suppose you want to set up an analysis job for the SAT pipeline. 

First, get the list of all pipeline templates used for creating analysis jobs: 

GET /smrt-link/resolved-pipeline-templates 

The response is an array of pipeline template objects. In this response, do the search for the entry with 
name : Site Acceptance Test (SAT). The entry may look as in the following example: (Task 
options were truncated for clarity.) 

 
    { 
        "name": "Site Acceptance Test (SAT)", 
        "id" : "cromwell.workflows.pb_sat", 
        "description": "Site Acceptance Test - lambda genome resequencing used 
to validate new\n    PacBio installations", 
        "version" : "0.1.0", 
        "entryPoints": [ 
            { 
                "entryId": "eid_ref_dataset", 
                "fileTypeId": "PacBio.DataSet.ReferenceSet", 
                "name": "Entry Name: PacBio.DataSet.ReferenceSet" 
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            }, 
            { 
                "entryId": "eid_subread", 
                "fileTypeId": "PacBio.DataSet.SubreadSet", 
                "name": "Entry Name: PacBio.DataSet.SubreadSet" 
            } 
        ], 
        "tags" : [ "consensus", "mapping", "reports", "sat"], 
        "taskOptions" : [{ 
            { 
                "default": "", 
                "description": "Dataset filter string", 
                "id": "dataset_filters", 
                "name": "Filters to add to the DataSet", 
                "optionTypeId": "string" 
            }, 
            { 
                "default": 0, 
                "description": "Downsampling Factor", 
                "id": "downsample_factor", 
                "name": "Downsampling Factor", 
                "optionTypeId": "integer" 
            } 
        ]    } 

In the above entry, take the value of the pipeline id :cromwell.workflows. 

Also, take the Data Set types of entryPoints elements: fileTypeId : 
PacBio.DataSet.SubreadSet and fileTypeId : PacBio.DataSet.ReferenceSet. In this 
example we use the lambdaNEB reference and example PacBio data that are distributed with SMRT Link. 
First check whether they have been imported already: 

GET /smrt-link/datasets/subreads/5bd43ef4-6afe-dc62-4f49-03b75a051801 

 
  { 
    "name": "lambda/0007_tiny", 
    "updatedAt": "2015-10-26T22:54:46.000Z", 
    "path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub 
/current/private/pacbio/canneddata/lambdaTINY/m150404_101626_42267_c1008079208
00000001823174110291514_s1_p0.subreadset.xml", 
    "instrumentControlVersion": "2.3.0.1.142990", 
    "tags": "", 
    "instrumentName": "42267", 
    "uuid": "5bd43ef4-6afe-dc62-4f49-03b75a051801", 
    "totalLength": 16865720, 
    "projectId": 1, 
    "numRecords": 19930, 
    "wellSampleName": "Inst42267-040315-SAT-100pM-2kb-P6C4", 
    "bioSampleName": "unknown", 
    "version": "3.0.1", 
    "cellId": "unknown", 
    "id": 5, 
    "md5": "288d3bdadf83bda41dd7fefc11cad128", 
    "importedAt": "2018-07-06T00:45:10.753Z", 
    "jobId": 3, 
    "createdAt": "2015-10-26T22:54:46.000Z", 
    "isActive": true, 
 
    "createdBy": "smrtlinktest", 
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    "wellName": "A01", 
    "cellIndex": 4, 
    "metadataContextId": 
"m150404_101626_42267_c100807920800000001823174110291514_s1_p0", 
 
    "numChildren": 0, 
    "runName": "lambdaTINY", 
    "datasetType": "PacBio.DataSet.SubreadSet", 
    "comments": "Inst42267-SAT-100pM-2kbLambda-P6C4-Std120_CPS_040315" 
 
  } 
GET /smrt-link/datasets/references/1a369917-507e-4f70-9f38-69614ff828b6 
  { 
    "name": "lambdaNEB", 
    "updatedAt": "2015-10-24T03:32:50.530Z", 
    "path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub 
/current/private/pacbio/canneddata/referenceset/lambdaNEB/referenceset.xml", 
    "ploidy": "haploid", 
    "tags": "", 
    "uuid": "1a369917-507e-4f70-9f38-69614ff828b6", 
    "totalLength": 48502, 
    "projectId": 1, 
    "numRecords": 1, 
    "version": "3.0.1", 
    "id": 4, 
    "md5": "4861bca63e02aa26c92724febb3299c2", 
    "importedAt": "2018-07-06T00:45:10.660Z", 
    "jobId": 5, 
    "createdAt": "2015-10-24T03:32:50.530Z", 
    "isActive": true, 
    "createdBy": "smrtlinktest", 
    "organism": "lambdaNEB", 
    "numChildren": 0, 
    "datasetType": "PacBio.DataSet.ReferenceSet", 
    "comments": "reference dataset comments" 
  } 

Build the request body for creating an analysis job for the SAT pipeline. Use the pipeline id obtained 
above as the value for the pipelineId element. Use the two Data Set UUIDs as values of the 
datasetId fields in the entryPoints array. For example: 

 
{ 
        "pipelineId" : "cromwell.workflows.pb_sat", 
        "entryPoints" : [ 
            { 
                "datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801", 
                "entryId": "eid_subread", 
                "fileTypeId": "PacBio.DataSet.SubreadSet" 
            }, 
            { 
                "datasetId": "1a369917-507e-4f70-9f38-69614ff828b6", 
                "entryId": "eid_ref_dataset", 
                "fileTypeId": "PacBio.DataSet.ReferenceSet" 
            } 
 
        ], 
        "taskOptions" : [], 
        "workflowOptions": [], 
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        "name": "My SAT Job" 
    } 

Now create a job of type analysis. Use the request body built above in the following API call: 

POST /smrt-link/job-manager/jobs/analysis 

Verify that the job was created successfully. The return HTTP status should be 201 Created. 

 

How to Query Job History 
The Job Service endpoints provide a number of search criteria (plus paging support) that can be used to 
limit the return results. A full list of available search criteria is provided in the the JSON Swagger API 
definition for the jobs endpoint. The following search retrieves all failed Site Acceptance Test (SAT) 
pipeline jobs: 

GET /smrt-link/job-manager/jobs/analysis?state=FAILED&subJobTypeId=cromwell 

For most data types, additional operators besides equality are allowed. For example: 

GET /smrt-link/job-manager/jobs/analysis?createdAt=lt%3A2019-03-
01T00:00:00.000Z&createdBy=myusername 

This retrieves all analysis jobs run before 2019-03-01 by a user with the login ID myusername.  

Note: Certain searches, especially partial text searches using like:, may be significantly slower to 
execute and can overload the server if performed too frequently. 
 
You can also perform bulk retrieval of jobs using the search endpoint: 
 
POST /smrt-link/job-manager/jobs/analysis/search 
  { 
    "id": "in:1,2,3,4" 
  } 
 
The example above will retrieve jobs 1-4. You may also query on UUID or any other supported search 
field. 
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How to Copy and Rerun a SMRT Link Analysis 
The options endpoint for a specific job provides the POST content that ran it: 

GET /smrt-link/job-manager/jobs/analysis/<jobId>/options 

As is the case for Data Set IDs, either the UUID or the integer ID of the job can be provided. In this case, 
as both are generated automatically at job creation time, there is no preference for one or the other. 

For example: 
 
GET /smrt-link/job-manager/jobs/analysis/3/options 
 
  { 
    "name": "sat_lambda", 
    "entryPoints": [ 
      { 
        "entryId": "eid_subread", 
        "fileTypeId": "PacBio.DataSet.SubreadSet", 
        "datasetId": 1 
      }, 
      { 
        "entryId": "eid_ref_dataset", 
        "fileTypeId": "PacBio.DataSet.ReferenceSet", 
        "datasetId": 2 
      } 
    ], 
    "workflowOptions": [], 
    "taskOptions": [], 
 
    "pipelineId": "cromwell.workflows.pb_sat" 
  } 

This data model can be directly POSTed to the analysis job endpoint as described above. Note that in 
this case, the datasetId fields are the integer IDs generated by the SMRT Link database backend. You 
can retrieve the full Data Set records (including their UUIDs) by using the same Data Set endpoints 
described previously, only with the integer IDs instead of UUIDs: 
GET /smrt-link/datasets/subreads/1 
GET /smrt-link/datasets/references/2 

 

How to Run an Analysis on All Collections in a Run 
As explained earlier, each Collection corresponds to a SubreadSet Data Set. To run an analysis on 
multiple SubreadSets combined, you can either first run a merge job to generate a single input, or let the 
analysis job perform the merge automatically. 

For the two-step approach, perform the following steps: 

1. As described previously, collect the UUIDs for the Collections in the Run you want to analyse. 

2. Check each Collection UUID to make sure the SubreadSet XML has already been imported, and if not, 
import it as described above: 

GET /smrt-link/datasets/subreads/<UUID> 

3. Build a payload using the following model: 
 

 



                                                                  Sequel Systems SMRT Link Web Services API Use Cases v10.1 
 

22   

 
    { 
      "datasetType": "PacBio.DataSet.SubreadSet", 
      "ids": ["<UUID1>", "<UUID2>", ...], 
      "name": "Merge run <runId> collections" 
    } 

4. Create a merge-datasets job with the request body from Step 3: 

POST /smrt-link/job-manager/jobs/merge-datasets 

5. Block until this job completes successfully, then retrieve the list of job datastore files. One of these 
should be the merged Data Set. 
 
GET /smrt-link/job-manager/jobs/merge-datasets/<ID>/datastore 
 

  [ 
    { 
      "modifiedAt": "2018-07-12T21:38:34.815Z", 
      "name": "Auto-merged hdfsubreads @ 1531431514119", 
      "fileTypeId": "PacBio.DataSet.SubreadSet", 
      "path": 
"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/merged.dataset.xml", 
      "description": "Merged PacBio DataSet from 4 files", 
      "uuid": "f54694da-5985-42b9-9a9e-f2190bd3b4a4", 
      "fileSize": 33495, 
      "importedAt": "2018-07-12T21:38:35.085Z", 
      "jobId": 4, 
      "createdAt": "2018-07-12T21:38:34.815Z", 
      "isActive": true, 
      "jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b", 
      "sourceId": "pbscala::merge_dataset" 
 
    }, 
    { 
      "modifiedAt": "2018-07-12T21:38:34.264Z", 
      "name": "SMRT Link Job Log", 
      "fileTypeId": "PacBio.FileTypes.log", 
      "path": 
"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/pbscala-job.stdout", 
      "description": "SMRT Link Job Log", 
      "uuid": "b19fbfc6-0808-40fc-917b-092f369180cd", 
      "fileSize": 388, 
      "importedAt": "2018-07-12T21:38:34.266Z", 
      "jobId": 8767, 
 
      "createdAt": "2018-07-12T21:38:34.264Z", 
      "isActive": true, 
      "jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b", 
      "sourceId": "analysis::master.log" 
    } 
  ] 

6. You may now follow the steps for running an analysis job, using the new merged SubreadSet as input. 
 

To use the auto-merge capability (introduced in SMRT Link v7.0.0), just submit the analysis job options 
with a separate eid_subread entry point for each input Data Set, for example: 
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  GET /smrt-link/job-manager/jobs/analysis/3/options 
  { 
    "name": "sat_lambda", 
    "entryPoints": [ 
      { 
        "entryId": "eid_subread", 
        "fileTypeId": "PacBio.DataSet.SubreadSet", 
        "datasetId": "<UUID1>" 
      }, 
      { 
        "entryId": "eid_subread", 
        "fileTypeId": "PacBio.DataSet.SubreadSet", 
        "datasetId": "<UUID2>" 
      }, 
      { 
        "entryId": "eid_ref_dataset", 
        "fileTypeId": "PacBio.DataSet.ReferenceSet", 
        "datasetId": "<REF_UUID>" 
      } 
    ], 
    "workflowOptions": [], 
    "taskOptions": [], 
    "pipelineId": "cromwell.workflows.pb_sat" 
  } 

Note that this process is opaque to Cromwell, which does not itself accept multiple inputs with the same 
identifier. 
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How to Delete a SMRT Link Job 
To delete a job, you need to create another job of type delete-job, and pass the UUID of the job to 
delete in the payload (the request body). 

Perform the following steps: 

1. Build the payload for the POST request as a JSON with the following fields: 

• jobId: The UUID of the job to be deleted. 

• removeFiles: A boolean flag specifying whether to remove files associated with the job being 
deleted. 

• dryRun: A boolean flag to check whether it is safe to delete the job prior to actually deleting it. 

Note: To make sure that it is safe to delete the job (that is, there is no other piece of data dependent 
on the job being deleted), then first set the dryRun field to true and perform the API call described in 
Step 2 below. If the call succeeds, meaning that the job can be safely deleted, set the dryRun field to 
false and repeat the same API call again, as described in Step 3 below. 

 
2. Check whether the job can be deleted, without actually changing anything in the database or on disk. 

Create a job of type delete-job with the payload which has dryRun = true; use the POST 
request with the following endpoint: 
 
POST /smrt-link/job-manager/jobs/delete-job 

3. If the previous API call succeeded, that is, the job may be safely deleted, then proceed with actually 
deleting the job. 
 
Create a job of type delete-job with the payload which has dryRun = false; use the POST 
request with the following endpoint: 

POST /smrt-link/job-manager/jobs/delete-job 

Suppose you want to delete the job with UUID = 13957a79-1bbb-44ea-83f3-6c0595bf0d42. Define the 
payload as in the following example, and set the dryRun field to true: 
 
    { 
        "jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42", 
        "removeFiles" :true, 
        "dryRun" : true 
    } 

Create a job of type delete-job, using the above payload in the following POST request: 

POST /smrt-link/job-manager/jobs/delete-job 

Verify that the response status is 201: Created. 

Also notice that the response body contains JSON corresponding to the job to be deleted, as in the 
following example: 
 
    { 
        "name" : "Job merge-datasets", 
        "uuid" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42", 
        "jobTypeId" : "merge-datasets", 
        "id" : 53, 
        "createdAt" : "2016-01-29T00:09:58.462Z", 
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        ... 
        "comment" : "Merging Datasets 
MergeDataSetOptions(PacBio.DataSet.SubreadSet, Auto-merged subreads 
@1454026198403)" 
    } 

Define the payload as in the following example, and this time set the dryRun field to false, to actually 
delete the job: 
 
    { 
        "jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42", 
        "removeFiles" : true, 
        "dryRun" : false 
    } 

Create a job of type delete-job, using the above payload in the following POST request: 

POST /smrt-link/job-manager/jobs/delete-job 

Verify that the response status is 201: Created. Notice that this time the response body contains JSON 
corresponding to the job of type delete-job, as in the following example: 

 
    { 
        "name" : "Job delete-job", 
        "uuid" : "1f60c976-e426-43b5-8ced-f8139de6ceff", 
        "jobTypeId" : "delete-job", 
        "id" : 7666, 
        "createdAt" : "2017-03-09T11:51:38.828-08:00", 
        ... 
        "comment" : "Deleting job 13957a79-1bbb-44ea-83f3-6c0595bf0d42" 
    } 

Clients should then block until the job is complete. 
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How to Create and Manipulate a Project 
By default, all Data Sets and analyses are part of a "General Project" with global permissions. Creating 
new projects lets you organize related Data Sets and jobs and optionally restrict access to specific users 
using the SMRT Link UI. (Note:This is only enforced in the UI itself; the REST services do not currently 
restrict users to specific projects.) 
The Projects service requires user credentials, which typically means going through the WSO2 server as 
described in How WSO2 Authentication Works. Following is an example of how to create a project that 
contains two Data Sets and includes three users with varying levels of access: 
  
    POST /SMRTLink/1.0.0/smrt-link/projects 
    { 
        "name": "Human Structural Variation", 
        "description": "Human SV datasets and analyses", 
        "state": "CREATED", 
        "datasets": [ 
            {"id": 34}, 
            {"id": 45} 
        ], 
        "members": [ 
            {"login": "user1", "role": "OWNER"}, 
            {"login": "user2", "role": "CAN_EDIT"}, 
            {"login": "collaborator1", "role": "CAN_VIEW"} 
        ], 
    } 

 
The server will return the newly-created project including the integer ID that should be used in subsequent 
requests: 
 
    { 
        "id": 2, 
        "name": "Human Structural Variation", 
        "description": "Human SV datasets and analyses", 
        "state": "CREATED", 
        "createdAt": "2020-06-01T11:51:38.828-08:00", 
        "updatedAt": "2020-06-01T11:51:38.828-08:00", 
        "isActive": true, 
        "grantRoleToAll": null, 
        "datasets": [ 
            {"id": 34}, 
            {"id": 45} 
        ], 
        "members": [ 
            {"login": "user1", "role": "OWNER"}, 
            {"login": "user2", "role": "CAN_EDIT"}, 
            {"login": "collaborator1", "role": "CAN_VIEW"} 
        ] 
    } 

 
If you do not want to manage user permissions individually, the field grantRoleToAll grants global 
access to the project if non-null. 
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You can retrieve details for a specific project by appending the integer ID to the URL, thus: 

 
    GET /SMRTLink/1.0.0/smrt-link/projects/2 
    { 
        "id": 2, 
        "name": "Human Structural Variation", 
        ... 
    } 

 
To update project details, send a PUT request to this same URL with the modified version of the data 
model used to create the project. Use DELETE to soft-delete the project and reassign all of its Data Sets 
and jobs to the “General Project”. 
Once you have a project ready to work with, any new job can be added to that project by overriding the 
projectId field to the job data model (the default is 1, the "General Project"). You may also add a 
projectId query argument when retrieving lists of jobs or Data Sets to filter the list to members of the 
specified project. 
 

How to Retrieve Mapping Report Metrics From an Analysis 
Job 
The jobs API provides an endpoint to retrieve report files: 
 
  GET /smrt-link/job-manager/jobs/analysis/1001/reports 
  
  [ 
    { 
      "dataStoreFile": { 
        "modifiedAt": "2020-12-07T10:14:03.121Z", 
        "name": "Report mapping_stats_ccs", 
        "fileTypeId": "PacBio.FileTypes.JsonReport", 
        "path": "/data/smrtlink/jobs-root/cromwell-
executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call-
mapping_stats/execution/mapping_stats.report.json", 
        "description": "PacBio Report mapping_stats_ccs (a7d394be-9a9a-457a-
b0ad-5d41a21a460b)", 
        "uuid": "a7d394be-9a9a-457a-b0ad-5d41a21a460b", 
        "fileSize": 7459, 
        "importedAt": "2020-12-07T10:14:46.635Z", 
        "createdAt": "2020-12-07T10:14:03.121Z", 
        "isActive": true, 
        "sourceId": "pb_align_ccs.report_mapping_stats" 
      }, 
      "reportTypeId": "pb_align_ccs.report_mapping_stats" 
    }, 
    { 
      "dataStoreFile": { 
        "modifiedAt": "2020-12-07T10:14:12.639Z", 
        "name": "Report coverage", 
        "fileTypeId": "PacBio.FileTypes.JsonReport", 
        "path": "/data/smrtlink/jobs-root/cromwell-
executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call- 
 



                                                                  Sequel Systems SMRT Link Web Services API Use Cases v10.1 
 

28   

 
coverage_reports/coverage_reports/408518ac-80e5-4f48-9185-ed1b51fe43c6/call-
pbreports_coverage/execution/coverage.report.json", 
        "description": "PacBio Report coverage (52adc5b2-b1b9-4e27-9ae4-
94de2a525b1e)", 
        "uuid": "52adc5b2-b1b9-4e27-9ae4-94de2a525b1e", 
        "fileSize": 2596, 
        "importedAt": "2020-12-07T10:14:46.635Z", 
        "createdAt": "2020-12-07T10:14:12.639Z", 
        "isActive": true, 
        "sourceId": "pb_align_ccs.report_coverage" 
      }, 
      "reportTypeId": "pb_align_ccs.report_coverage" 
    } 
  ] 

For workflows that produce a mapping report, it will typically have a reportTypeId of the form 
workflow_id.report_mapping_stats, in this case pb_align_ccs.report_mapping_stats. We 
can then retrieve the full report by adding the UUID to the URL: 
 
  GET /smrt-link/job-manager/jobs/analysis/1001/reports/a7d394be-9a9a-457a-
b0ad-5d41a21a460b 
  
  { 
    "version": "1.0.1", 
    "id": "mapping_stats_ccs", 
    "_comment": "Generated with pbcommand version  at 2020-12-
07T02:14:03.119926", 
    "title": "Report mapping_stats_ccs", 
    "attributes": [ 
      { 
        "id": "mapping_stats_ccs.blast_identity", 
        "name": "Mean Concordance (mapped)", 
        "value": 0.8919674526217451 
      }, 
      ... 
    ] 
  } 

In SMRT Link v10.1 and later blast_identity is the metric displayed as Mean Concordance 
(mapped) in the SMRT Link UI (after converting to a percentage value). This Python snippet shows an 
alternative approach to retrieving several metrics like this from the report JSON file, bypassing the final 
API call: 
  
.. code-block:: python 
  
  import os.path 
  from pbcommand.pb_io import load_report_from_json 
  
  def get_mapping_metrics(report_file): 
      report = load_report_from_json(report_file) 
      keys = {"blast_identity", "mapped_reads_n", "mapped_readlength_mean"} 
      return {a.id:a.value for a in report.attributes if a.id in keys} 
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