SMRT® Link user guide (v11.0)

Introduction ... 4

Contact information 5
 - Module menu commands 6
 - Gear menu commands 6
 - Sending information to Technical Support 7

Sample Setup ... 8
 - Application-based calculations 9
 - Custom calculations 10
 - Classic mode ... 10
 - Editing or printing calculations 12
 - Deleting calculations 12
 - Importing/exporting calculations 12

Run Design .. 16
 - Creating a new Run Design 16
 - Custom Run Designs 18
 - Advanced options 19
 - Editing or deleting Run Designs 20
 - Creating a Run Design by importing a CSV file 20

Run QC ... 27
 - Table fields ... 29
 - Run settings and metrics 31

Data Management .. 34
 - What is a Data Set? 34
 - Creating a Data Set 35
 - Viewing Data Set information 36
 - Copying a Data Set 36
 - Deleting a Data Set 37
 - Starting a job from a Data Set 37
 - Data Set QC reports 37
 - What is a Project? 39
 - Data Sets and Projects 39
 - Creating a Project 39
 - Editing a Project 40
 - Deleting a Project 40
 - Viewing/deleting sequence, reference and barcode data 41
 - Importing sequence, reference and barcode data 41
 - Exporting sequence, reference and barcode data 42

SMRT® Analysis .. 44
 - Creating and starting a job 44
 - Starting a job after viewing sequence data 49
 - Canceling a running job 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restarting a failed job</td>
<td>50</td>
</tr>
<tr>
<td>Viewing job results</td>
<td>51</td>
</tr>
<tr>
<td>Copying and running an existing job</td>
<td>52</td>
</tr>
<tr>
<td>Exporting a job</td>
<td>52</td>
</tr>
<tr>
<td>Importing a job</td>
<td>52</td>
</tr>
<tr>
<td>PacBio® secondary analysis applications</td>
<td>54</td>
</tr>
<tr>
<td>Genome Assembly</td>
<td>55</td>
</tr>
<tr>
<td>HiFi Mapping</td>
<td>58</td>
</tr>
<tr>
<td>HiFiViral SARS-CoV-2 Analysis</td>
<td>62</td>
</tr>
<tr>
<td>Iso-Seq® Analysis</td>
<td>67</td>
</tr>
<tr>
<td>Microbial Genome Analysis</td>
<td>74</td>
</tr>
<tr>
<td>Minor Variants Analysis</td>
<td>80</td>
</tr>
<tr>
<td>Structural Variant Calling</td>
<td>86</td>
</tr>
<tr>
<td>PacBio® data utilities</td>
<td>90</td>
</tr>
<tr>
<td>5mC CpG Detection</td>
<td>91</td>
</tr>
<tr>
<td>Demultiplex Barcodes</td>
<td>92</td>
</tr>
<tr>
<td>Export Reads</td>
<td>98</td>
</tr>
<tr>
<td>Mark PCR Duplicates</td>
<td>100</td>
</tr>
<tr>
<td>Trim Ultra-Low Adapters</td>
<td>102</td>
</tr>
<tr>
<td>Circular Consensus Sequencing (CCS)</td>
<td>104</td>
</tr>
<tr>
<td>Working with barcoded data</td>
<td>107</td>
</tr>
<tr>
<td>Step 1: Specify the barcode setup & sample names in a Run Design</td>
<td>107</td>
</tr>
<tr>
<td>Step 2: Perform the sequencing run</td>
<td>109</td>
</tr>
<tr>
<td>Step 3: (Optional) Run the Demultiplex Barcodes data utility</td>
<td>110</td>
</tr>
<tr>
<td>Step 4: Run applications using the demultiplexed data as input</td>
<td>111</td>
</tr>
<tr>
<td>Demultiplex Barcodes details</td>
<td>112</td>
</tr>
<tr>
<td>Automated analysis</td>
<td>115</td>
</tr>
<tr>
<td>Creating an Auto Analysis job from SMRT Analysis</td>
<td>115</td>
</tr>
<tr>
<td>Creating Auto Analysis from a Run Design</td>
<td>116</td>
</tr>
<tr>
<td>HiFiViral SARS-CoV-2: Creating Auto Analysis in Run Design</td>
<td>116</td>
</tr>
<tr>
<td>Getting information about analyses created by Auto Analysis</td>
<td>116</td>
</tr>
<tr>
<td>Getting information about Pre Analysis from SMRT Analysis</td>
<td>117</td>
</tr>
<tr>
<td>Getting information about Pre Analysis from Run Design</td>
<td>117</td>
</tr>
<tr>
<td>Visualizing data using IGV</td>
<td>118</td>
</tr>
<tr>
<td>Using the PacBio® self-signed SSL certificate</td>
<td>120</td>
</tr>
<tr>
<td>Sequel® II and Sequel IIe systems output files</td>
<td>121</td>
</tr>
<tr>
<td>Sequel II system output files</td>
<td>121</td>
</tr>
<tr>
<td>Sequel II system output files</td>
<td>124</td>
</tr>
<tr>
<td>Secondary analysis output files</td>
<td>126</td>
</tr>
<tr>
<td>Configuration and user management</td>
<td>129</td>
</tr>
<tr>
<td>LDAP</td>
<td>129</td>
</tr>
<tr>
<td>SSL</td>
<td>129</td>
</tr>
<tr>
<td>Adding and deleting SMRT Link users</td>
<td>130</td>
</tr>
</tbody>
</table>
Introduction

This document describes how to use PacBio's SMRT Link software. SMRT Link is the web-based end-to-end workflow manager for Sequel II systems. SMRT Link includes the following modules:

- **Sample Setup**: Calculate binding and annealing reactions for preparing DNA libraries for use on all Sequel II systems. (See "Sample Setup" on page 8 for details.)
- **Run Design**: Design sequencing runs and create and/or import sample sheets. (See "Run Design" on page 16 for details.)
- **Run QC**: Monitor run progress, status and quality metrics. (See "Run QC" on page 27 for details.)
- **Data Management**: Create Projects and Data Sets; generate QC reports for Data Sets; view, import, or delete sequence, reference, and barcode files. (See "Data Management" on page 34 for details.)
- **SMRT Analysis**: Perform secondary analysis on the basecalled data (such as sequence alignment, variant detection, de novo assembly, structural variant calling, and RNA analysis) after a run has completed. (See "SMRT® Analysis" on page 44 for details.)

Note: SMRT Link v11.0 is for use with Sequel II systems and Sequel IIe systems only. If you are using a Sequel system, use an earlier version of SMRT Link.

This document also describes:

- The data files generated by the Sequel II system and Sequel IIe systems for each cell transferred to network storage. (See “Sequel® II system and Sequel IIe system output files” on page 121 for details.)
- The data files generated by secondary analysis. (See “Secondary analysis output files” on page 126 for details.)
- Configuration and user management. (See “Configuration and user management” on page 129 for details.)
- SMRT Link client hardware/software requirements. (See “Hardware/software requirements” on page 132 for details.)

Installation of SMRT Link server software is discussed in the document SMRT Link software installation guide (v11.0).

New features, fixed issues and known issues are listed in the document SMRT Link release notes (v11.0).

When you first start SMRT Link, you must specify which system you are using: Sequel II, or Sequel IIe. This choice affects some of the initial values used in the Sample Setup and Run Design modules. In those modules, you can switch between the two Sequel systems as needed. Users with administrator access can configure SMRT Link to support all instrument types.
Contact information

For additional technical support, contact PacBio at support@pacb.com or 1-877-920-PACB (7222).

Using SMRT® Link

You access SMRT Link using the Chrome web browser.

- SMRT Link is **not** available on the instrument – it must be accessed from a remote workstation.
- Depending on how SMRT Link was installed at your site, logging in with a user name and password may be required.
- SMRT Link needs a Secure Sockets Layer (SSL) certificate to ensure a secure connection between the SMRT Link server and your browser using the HTTPS protocol.

If an SSL certificate is **not** installed with SMRT Link, the application will use the PacBio self-signed SSL certificate and will use the HTTP protocol. In this case, each user will need to accept the browser security warnings described in “Using the PacBio® self-signed SSL certificate” on page 120.

After accessing SMRT Link, the **home page** displays.

- Click the **PacBio logo** at the top left to navigate back to the SMRT Link home page from within the application.
- Click the **Gear menu** to sign out, configure for the Sequel II system or Sequel IIe system, view version information, or perform administrative functions (Admins **only**).
- Click a module name to access that module. **Sample Setup, Run Design, Data Management** and **SMRT Analysis** include links to create new Calculations, Run Designs, Data Sets, and jobs. (A **Module** menu displays next to the PacBio logo, allowing you to move between modules.)
- Click ? to view the SMRT Link online help.
- Select **Sign Out** from the Gear menu to log out of SMRT Link.
Module menu commands

- **Sample Setup**: Displays the Sample Setup module.
- **Run Design**: Displays the Run Design module.
- **Run QC**: Displays the Run QC module.
- **Data Management**: Displays the Data Management module.
- **SMRT Analysis**: Displays the SMRT Analysis module.

Gear menu commands

- **Show Alarms**
 - Displays SMRT Link system-level alarms. To clear alarms, select and click **Clear Alarm** or **Clear All Alarms**.

- **Configure**
 - To specify the Sequel II system(s) that SMRT Link will be used with, click **Instruments** and check the appropriate box(es).
 - **Admin users only**: Add/delete SMRT Link users and specify their roles. See “Adding and deleting SMRT Link users” on page 130 for details.
 - To specify how numbers are formatted, click **Number Formatting** and select **Period** or **Comma** as the decimal separator.
 - **(Sequel IIe system only)** To specify whether CCS analysis output includes kinetics information (used for epigenetics analysis), click **CCS Analysis Output** and select **Yes** or **No**. This is the default setting for all CCS analysis output, unless overwritten in individual Run Designs. **Note**: Adding kinetics information can increase the amount of storage used by the output BAM files by up to 5 times.

- **About SMRT Link**
 - Displays software version information and available space on the server SMRT Link is connected to.
 - Click **Send** to send configuration information and/or analysis usage information to PacBio Technical Support for help in troubleshooting failed jobs.
 - **Admin users only**: 1) Update the SMRT Link **Chemistry Bundle**, which includes kit and DNA Control Complex names used in the Sample Setup and Run Design modules. 2) Update the SMRT Link **UI Bundle**, which includes changes and bug fixes to the SMRT Link Graphical User Interface or UI for a SMRT Link module.

- **Sign Out**
 - Logs you out and displays the initial login page.

Working with tables

- To sort table columns: Click a column title.
- To see additional columns: Click the > symbol next to a column title.
- To search within a table: Enter a unique search string into the Search field. (For details, see “Appendix B - Data search” on page 136.)
Sending information to Technical Support

To open a case with PacBio Technical Support, send an email to support@pacb.com.

Troubleshooting information can be sent to PacBio Technical Support two ways:

- From the SMRT Link menu: **About > Troubleshooting Information > Send.**
- From a SMRT Link “Failed” analysis Results page: Click **Send Log Files.**
Sample Setup

To prepare your samples for sequencing, use SMRT Link’s Sample Setup module to generate a customized protocol for primer annealing and polymerase binding to SMRTbell® templates, with subsequent sample cleanup. You can then print the instructions for use in the lab.

1. Access SMRT Link using the Chrome web browser.
2. Select Sample Setup.
3. Select High-Throughput mode, which provides a more streamlined workflow to efficiently process multiple samples with similar library properties (such as mean insert size and DNA concentration) in parallel. You can also export the calculated values to a CSV file for laboratory automation.
 Note: Classic mode is provided for legacy support purposes only, and is described later in this document.
4. Click + New Calculation.
5. Enter the sample name.
Application-based calculations

6. Select a sequencing application for the sample. The following fields are auto-populated and display in green:
 - Binding Kit
 - Cleanup Anticipated Yield

7. Enter the number of samples for this calculation. Samples should be substantially equivalent to each other; all should have insert sizes and concentrations within +/- 15% of the specified values.

8. Enter the number of SMRT® Cells to bind per sample.

9. Enter the available volume per sample, in µL. When preparing multiple samples, this should be the minimum volume available for any sample.

10. Specify an insert size, in base pairs. The insert size is the length of the double-stranded nucleic acid fragment in a SMRTbell template, excluding the hairpin adapters. This matches the mean insert size for the sample; the size range boundaries are described in the library preparation protocol. Enter the mean insert size of the sample(s).

11. Enter the sample concentration(s), in ng/ul. Note that the acceptable range of input concentrations depends on insert size:

<table>
<thead>
<tr>
<th>Insert size</th>
<th>Concentration range</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kb and up</td>
<td>20 - 60 ng/ul</td>
</tr>
<tr>
<td>3kb – 9999 bp</td>
<td>6 – 20 ng/ul</td>
</tr>
<tr>
<td>1.8kb – 2999 bp</td>
<td>3 – 10 ng/ul</td>
</tr>
<tr>
<td>500bp – 1499 bp</td>
<td>1 – 3 ng/ul</td>
</tr>
</tbody>
</table>

12. If necessary, edit the Cleanup anticipated yield. Adjust this percentage based on previous experience. (Cleanup removes excess primers/polymerase from bound complexes, which results in higher quality data.)

13. Specify the on-plate loading concentration (OPLC), in pM.

14. Specify the Minimum Pipetting Volume, in uL. This allows you to set a lower limit on pipetting volumes to use in certain protocol steps, such as sample annealing and binding. We recommend setting this to 1 uL, though in some cases, for example if sample availability is very limited, it may be appropriate to set a value below 1 uL. Some protocol steps include fixed values of 1 uL that will not be affected by this setting.
15. Optionally, do one of the following:
 - Click **Copy** to start a new sample group using the information entered. Then, edit specific fields for each sample group.
 - Click **Automate** to generate a CSV file. This exports the calculated values to a CSV file for lab automation.

16. To print the calculation(s) and instructions, use the browser’s Print command (**Ctrl-P**).

Custom calculations

1. To accommodate new or unique sample types, choose **Application > Custom** and enter all settings manually.
2. Click **Set Custom Preset Values** to save any custom application settings you may have specified. The next time you select **Application > Custom**, those settings are retrieved.

Classic mode

Note: Classic mode is provided for legacy support purposes only. We **highly recommend** using High-Throughput mode even for single samples.

1. Select **Classic** mode.
2. Select **Sequel II** or **Sequel Ile**.
3. Click **+ New Calculation**.
4. Enter the sample **name**.
5. Select a sequencing **application** for the sample.
6. Enter the available sample **volume**, in µL.
7. Enter the sample **concentration**, in ng/µL.
9. Select the **Internal Control** version to use for this run from the list, or type in a part number. PacBio **highly recommends** using the Internal Control to help distinguish between sample quality and instrument issues in the event of suboptimal sequencing performance. *(Note: PacBio **requires** the use of the Internal Control for consumables to be eligible for reimbursement consideration.)*
10. If necessary, edit the **Cleanup anticipated yield**. Adjust this percentage based on previous experience. (Cleanup removes excess primers/polymerase from bound complexes, which results in higher quality data.)
11. Specify the on-plate loading concentration (OPLC), in pM.
12. Enter the number of SMRT® Cells to bind, at the specified on-plate loading concentration.
13. Rather than leave a small amount of library behind, use the entire library volume available if desired by selecting **Prepare Entire Sample > Yes**. This generates annealing, binding and cleanup instructions for the **entire available sample volume**. The instructions for loading the sample plate will still follow the scale indicated by the specified number of SMRT Cells to run.
14. In the complex cleanup step, enter the pre- and post-cleanup sample DNA quantitation and volume measurement results.
15. Optionally, specify an alternative number of cells or on-plate loading concentration (OPLC) for the final sample dilution step. Use this feature, for example, to initially set up a single-SMRT Cell run to test a specific loading concentration prior to conducting a multi-SMRT Cell sequencing run, or to set up a loading titration experiment to optimize the OPLC for your particular sample.

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of Purified Complex (µL)</td>
<td></td>
</tr>
<tr>
<td>Purified Complex Concentration (ng/µL)</td>
<td></td>
</tr>
<tr>
<td>Molar Concentration of Purified Complex (pM)</td>
<td></td>
</tr>
<tr>
<td>Ampure Cleanup Yield (%)</td>
<td></td>
</tr>
</tbody>
</table>

16. Optionally, do one of the following:

- Click **Copy** to start a **new** sample using the information entered. Then, edit specific fields for each sample.
- Click **Remove** to delete the current calculation.
- Click **Lock** to lock the calculation. This is **required** before samples can be imported into the Run Design module, and also sends a finalized version of the instructions to the server for use in Data Set reports. After locking, no further changes can be made to a calculation. (Click **View** to see the locked instructions.) Locking ensures that calculations are always synchronized with their run time state if a report is generated at a later date. (**Lock** is only available if there are one or more samples visible and most fields have values entered.)
- Click the **New Sample** button at the top of the screen to start a new, empty sample.

17. Specify whether to display the **full** instructions, or only the **loading** instructions.
Advanced options

• Specify the Minimum Pipetting Volume, in uL. This allows you to set a lower limit on pipetting volumes to use in certain protocol steps, such as sample annealing and binding. We recommend setting this to 1 uL, though in some cases, for example if sample availability is very limited, it may be appropriate to set a value below 1 uL. Some protocol steps include fixed values of 1 uL that will not be affected by this setting.

• Specify the % of Annealing Reaction to Use in Binding. This accommodates pipetting underage: Due to pipetting issues, volumes may not add up to what they should; a value below 100% helps ensure there will be enough annealed sample for binding.

Editing or printing calculations
1. On the Sample Setup screen, select one or more calculation names.
2. Click Edit/Print. (Note: If the samples use different versions of chemistry, a warning message displays.)
3. Edit the sample(s) as necessary.
4. Specify whether to display the full instructions, or only the loading instructions.
5. To print the calculation(s), use the browser’s Print command (Ctrl-P).

Deleting calculations
1. On the Sample Setup screen, select one or more calculation names to delete.
2. Click Delete.

Importing/exporting calculations
Sample Setup supports importing and exporting calculations in CSV format.

To import a new calculation, first find (or create) a calculation similar to that you wish to import, then export it in CSV format. You can then customize the exported CSV file as needed, then import the modified CSV file.

Note: The content of the CSV file generated using the Export button in the Sample Setup home screen is different from the content of the CSV file generated using the High-Throughput mode’s Automate button used for lab automation.

1. Access SMRT Link using the Chrome web browser.
2. Select Sample Setup.
3. Select High-Throughput.
4. Select an existing calculation.
5. Click Export, then click Download.
6. Edit the exported calculation in Excel (changing sample names, concentrations, and so on), then save it under a new name.
7. In Sample Setup, click **Import**.
8. Click **Browse**, then select the CSV file you previously modified in Step 6 and click **Open**. If everything is correct, click **Continue**. The imported calculation displays.

Note:
- You can select multiple calculations to export to the same CSV file.
- You can also import multiple calculations by adding rows to the CSV file.

Following are the fields contained in the CSV-format Calculations file.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Name</td>
<td>Yes</td>
<td>Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only.</td>
</tr>
<tr>
<td>System Name</td>
<td>Yes</td>
<td>Must be Sequel II, or Sequel IIe.</td>
</tr>
<tr>
<td>Application</td>
<td>Yes</td>
<td>Enter one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HiFi Reads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Microbial Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HiFiViral SARS-CoV-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Iso-Seq Method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adeno-Associated Virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Full-Length 16S rRNA Sequencing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shotgun Metagenomic Profiling or Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <3kb Amplicons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• >=3kb Amplicons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Custom</td>
</tr>
<tr>
<td>Available Starting Sample Volume (uL)</td>
<td>Yes</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>Starting Sample Concentration (ng/uL)</td>
<td>Yes</td>
<td>Enter a positive integer. Units are in nanograms per microliter.</td>
</tr>
<tr>
<td>Insert Size (bp)</td>
<td>Yes</td>
<td>Enter a positive integer. Units are in base pairs.</td>
</tr>
<tr>
<td>Control Kit</td>
<td>No</td>
<td>Must be blank or Lxxxxx101717600123199.</td>
</tr>
<tr>
<td>Cleanup Anticipated Yield (%)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If Application is set to Custom, this field is required.</td>
</tr>
<tr>
<td>On Plate Loading Concentration (pM)</td>
<td>Yes</td>
<td>Enter a positive integer. Units are in parts per million.</td>
</tr>
<tr>
<td>Cells to Bind (cells)</td>
<td>Yes</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Prepare Entire Sample</td>
<td>Yes</td>
<td>Enter a Boolean value: true, t, yes, y, false, f, no, or n. Boolean values are not case-sensitive.</td>
</tr>
<tr>
<td>Sequencing Primer</td>
<td>Yes</td>
<td>Enter one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sequencing Primer v2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sequencing Primer v4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sequencing Primer v5</td>
</tr>
</tbody>
</table>
CSV file general requirements

- Each line in the CSV file represents **one** sample.
- The CSV file may **only** contain ASCII characters. Specifically, it must satisfy the regular expression `/^[\x00-\x7F]*$/g`

Following are the fields contained in the CSV file generated by the **Automate** button in High-Throughput mode. This includes **all** the fields.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding Kit</td>
<td>Yes</td>
<td>For Sequel II/Ile Binding Kits 2.0, 2.1, 2.2, 3.1 and 3.2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lxxxxx101780500123199 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lxxxxx101820500123199 (2.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lxxxxx101894200123199 (2.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lxxxxx102194200123199 (3.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lxxxxx102194100123199 (3.2)</td>
</tr>
<tr>
<td>Target Annealing Concentration (nM)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanomolar.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Binding Concentration (nM)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanomolar.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Polymerase Concentration (X)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binding Time (hours)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleanup Bead Type</td>
<td>No</td>
<td>Must be AMPure or ProNex.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleanup Bead Concentration (X)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Pipetting Volume (uL)</td>
<td>No</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>Percent of Annealing Reaction To Use In Binding (%)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Note: If Application is set to Custom, this field is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPure Diluted Bound Complex Volume (uL)</td>
<td>No</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>AMPure Diluted Bound Complex Concentration (ng/ul)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanograms per microliter.</td>
</tr>
<tr>
<td>AMPure Purified Complex Volume (uL)</td>
<td>No</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>AMPure Purified Complex Concentration (ng/ul)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanograms per microliter.</td>
</tr>
<tr>
<td>ProNex Diluted Bound Complex Volume (uL)</td>
<td>No</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>ProNex Diluted Bound Complex Concentration (ng/ul)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanograms per microliter.</td>
</tr>
<tr>
<td>ProNex Purified Complex Volume (uL)</td>
<td>No</td>
<td>Enter a positive integer. Units are in microliters.</td>
</tr>
<tr>
<td>ProNex Purified Complex Concentration (ng/ul)</td>
<td>No</td>
<td>Enter a positive integer. Units are in nanograms per microliter.</td>
</tr>
<tr>
<td>Requested Cells Alternate (cells)</td>
<td>No</td>
<td>Enter a positive integer.</td>
</tr>
<tr>
<td>Requested OPLC Alternate (pM)</td>
<td>No</td>
<td>Enter a positive integer. Units are in parts per million.</td>
</tr>
</tbody>
</table>
that display in the Sample Setup page, with the volumes listed in each table easily accessible for liquid handling automation purposes.

<table>
<thead>
<tr>
<th>Row</th>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Export Version</td>
<td>Version number of the file format specification. Allows for scripts to check version numbers to ensure compatibility through subsequent software releases.</td>
</tr>
<tr>
<td>2</td>
<td>Instructions Version</td>
<td>Version number of SMRT Link, chemistry bundle, and parameters.</td>
</tr>
<tr>
<td>3</td>
<td>Sample Group Name</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Annealing Number of Samples</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Annealing Sample Volume</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Annealing Master Mix Volume</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Annealing Incubation Temperature (C)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Annealing Incubation Time (minutes)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Polymerase Stock Volume</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sequel II Polymerase Dilution Buffer Volume</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Binding Number of Samples</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Binding Annealed Sample Volume</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Binding Master Mix Volume</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Binding Diluted Polymerase Volume</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Binding Incubation Temperature (C)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Binding Incubation Time (minutes)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ICD1 Sequel Complex Dilution Buffer Volume</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ICD1 Internal Control Stock Volume</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ICD2 Sequel Complex Dilution Buffer Volume</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ICD2 Diluted Internal Control (ICD1) Volume</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>ICD3 Sequel Complex Dilution Buffer Volume</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ICD3 Diluted Internal Control (ICD2) Volume</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Cleanup S2 Sample Input Volume</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Cleanup S2 Diluent Volume</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Cleanup S2 Binding Buffer</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Cleanup S3 Bead Solution Volume</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Cleanup S5 Elution Volume</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Cleanup S5 Elution Buffer</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Final Loading Number of Samples</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Final Loading Prepared Sample Volume</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Final Loading Diluted Internal Control (ICD3) Volume</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Final Loading Volume (micro-liter)</td>
<td></td>
</tr>
</tbody>
</table>
Run Design

Use SMRT Link’s **Run Design** module to create, edit, or import Run Designs. A **Run Design** specifies:

- The samples, reagents, and SMRT Cells to include in the sequencing run.
- The run parameters such as movie time and loading to use for the sample.

The Run Design then becomes available from the **Sequel Instrument Control Software (ICS)**, which is the instrument touchscreen software used to select a Run Design, load the instrument, and then start the run.

Run Designs created in SMRT Link are accessible from all Sequel II systems linked to the same SMRT Link server.

SMRT Link includes two different ways to create a Run Design:

- Use SMRT Link’s **Run Design** module to create a new Run Design.
- Create a CSV file, then import it using SMRT Link’s **Run Design** module.

Note: To create a run design, **either** use the Run Design screen, **or** import a CSV file. Do **not** mix the two methods.

Creating a new Run Design

1. Access SMRT Link using the Chrome web browser.
2. Select **Run Design**.
3. Runs Designs can be sorted and searched for:
 - To sort Run Designs, click a **column title**.
 - To search for a Run Design, enter a unique search string into the **Search** field.
4. To initiate a new Run Design, click **+ Create New Design**.
5. Specify if this Run Design is to be used with a Sequel II system or a Sequel IIe system. This affects the initial default values.

6. Enter a **Run Name**. (The software creates a new run name based on the current date and time; edit the name as needed.)

7. **(Optional)** Enter **Run Comments**, **Experiment Name**, and **Experiment ID** as needed. (**Note:** Experiment ID must be alphanumeric.)

8. **(Optional)** Click **Select Sample** to import information from a previously-created Sample Setup entry. The following fields are auto-populated as appropriate:
 - Sample Name
 - Binding Kit
 - DNA Control Complex
 - Insert Size
 - On-Plate Loading Concentration

Application-based Run Designs

9. Select a sequencing **application** from the list. The following fields are auto-populated, and display in green:
- Template Prep Kit
- Binding Kit
- Sequencing Kit
- DNA Control Complex
- Movie Time per SMRT Cell (hours)
- Pre-Extension Time (hours)

10. Enter a **Well Sample Name**. (This is the name of the sequencing library loaded into one well. *Example: HG002_2019_11_02_10K*)

11. Enter a **Bio Sample Name**. (This is the name of the biological sample contained in the sequencing library, such as HG002. See “Working with barcoded data” on page 107 for details.)

12. *(Optional)* Enter **Sample Comments**.

13. Specify the **well position** used for this sample: Click the icon to the right of the entry field and choose a plate position.

14. Specify an **insert size** (500 base pairs minimum). The insert size is the length of the double-stranded nucleic acid fragment in a SMRTbell template, excluding the hairpin adapters. This matches the average insert size for the sample; the size range boundaries are described in the library preparation protocol. *Note:* The default insert size for Subreads is 30,000; 10,000 for CCS reads.

15. Specify the **On-Plate loading concentration** (OPLC), in picomolarity.

16. *(Optional)* If you are using **barcoded samples**, see “Step 1: Specify the barcode setup and sample names in a Run Design” on page 107 for instructions. For details on secondary analysis of barcoded samples, see "Demultiplex Barcodes" on page 92.

17. Sample options:
 - Click **Copy**. This starts a new sample, using the values entered in the first sample.
 - Click **Delete**. This deletes the current sample.
 - Click **Add Sample**. This starts a new, empty sample.

18. After filling in all the samples, click **Save** - this saves the entire Run Design. The new Run Design displays on the main Run Design page.

19. Click **View Summary** to view a table summarizing the entire Run Design. The Run Design file is now imported and available for selection in Sequel ICS on the instrument.

20. *(Optional)* **Auto Analysis** allows a specific analysis to be **automatically** run after a sequencing run has finished and the data transferred to the SMRT Link server. See “Automated analysis” on page 115 for details.

Custom Run Designs

To accommodate new or unique Run Designs, choose **Application > Custom** and enter all parameters manually. (See here for recommendations based on the analysis application used.)
- **Template Prep Kit, Binding Kit, or Sequencing Kit**: Select one from the list, or type in a kit part number. If the barcode is invalid, "Invalid barcode" displays.

 Note: If the Sequencing or Binding kit selected is *incompatible*, an error message displays indicating the obsolete chemistry, and the run is *prevented* from proceeding.

- **DNA Control Complex**: PacBio **highly** recommends using the Internal Control to help distinguish between sample quality and instrument issues in the event of suboptimal sequencing performance. **(Note: PacBio requires** the use of the Internal Control for consumables to be eligible for reimbursement consideration.**

- **Movie time per SMRT Cell (hours)**: Enter a time between 0.5 and 30. **Note**: The SMRT Cell 8M part supports all movie times up to 30 hours.

- **Use Pre-Extension**: If selected, optionally specify the length of pre-extension time in hours. This initiates the sequencing reaction prior to data acquisition. After the specified time, the sequencing reagents are removed from the SMRT Cell and replenished with fresh reagents, and data acquisition starts. This feature is useful for short inserts (such as ≤15 kb) and provides a significant increase in read length.

- **Include 5mC Calls in CpG Motifs**: If selected, analyzes the kinetic signatures of cytosine bases in CpG motifs to identify the presence of 5mC.

- **Detect and Resolve Heteroduplex Reads**: Heteroduplexes are DNA molecules where the forward and reverse strands are not perfect reverse-complements. If the option is selected and heteroduplexes are detected, a consensus is called for each strand separately, and the sequence of both strands is output.

 Note: This option displays only if Adeno-Associated Virus, Full-Length 16S rRNA Sequencing, <3kb Amplicons, or >=3kb Amplicons are selected as the application.

Advanced options

- Specify whether to use **Adaptive Loading**. Adaptive Loading uses active monitoring of the ZMW loading process to predict a favorable loading end point. Certain steps (Cleanup and Sample Dilution) require a different buffer (Adaptive Loading Buffer) if this feature is used. **Note**: Adaptive Loading **requires** the use of Sequel® II binding kit 2.2. If you select Yes, fill in the following fields:

 - **Loading Target (P1 + P2)**: The fraction of ZMWs that the Adaptive Loading routine will aim to load with at least one sequencing complex. The default target for CCS applications is higher to accommodate loss of complexes during pre-extension, which is generally recommended for all CCS applications.

 - **Maximum Loading Time (hours)**: This defines the maximum time the system will allow loading to progress before proceeding to sequencing. (Loading time in Adaptive Loading is flexible.)
• Specify the length of time (1, 2 or 4 hours) for immobilization of SMRTbell templates. This is the length of time the SMRT Cell is at the Cell Prep Station to allow diffusion of SMRTbell templates into the ZMWs. This option is not available if Adaptive Loading is selected.
 − PacBio highly recommends using the default immobilization time of 2 hours.

• (Sequel IIe systems only) Specify, for this Run Design only, whether to include kinetics information (used for epigenetics analysis) in the CCS analysis output. This setting overwrites the global setting in Gear > Configure > CCS Analysis Output. Note: Adding kinetics information can increase the amount of storage used by the output BAM files by up to 5 times.

• Specify, for this Run Design only, whether to include low quality reads (non-HiFi reads) in the CCS analysis output. Note that this option disables automatic demultiplexing, 5mC detection, and heteroduplex insert detection, if applicable.

• Add Data to Project: Specify that Data Sets generated by SMRT Cell(s) using this Run Design be associated with the selected Project. (This also applies to any Data Sets generated using Auto Analysis. By default, all Data Sets are assigned to General Project, which is accessible to all users.)

Editing or deleting Run Designs
1. On the home page, select Run Design.
2. Click the name of the Run Design to edit or delete.
3. (Optional) Click View Summary to view a table summarizing the entire Run Design.
4. (Optional) Click Delete to delete the current Run Design.
5. (Optional) Edit any of the fields.
6. Click Save.

Creating a Run Design by importing a CSV file
On a remote workstation, open the sample CSV file included with the installation.

To obtain the sample CSV files
1. On the home page, select Run Design.
2. Click Import Run Design.
3. Click Download Template. The ZIP file containing templates (one for Sequel II systems, and one for Sequel IIe systems) downloads to your local machine.

To update and import the CSV file
1. Update the appropriate CSV file as necessary for the Run Design. (See the definitions of the Run Design attributes in the table below.)
2. Save the edited CSV file.
3. Import the file into Sequel ICS using SMRT Link. To do so, first access SMRT Link using the Chrome web browser.
4. Select **Run Design**.
5. Click **Import Run Design**.
6. Select the saved CSV file designed for the run and click **Open**. The file is now imported and available for selection in Sequel ICS on the instrument.

CSV file structure

- Each CSV file row represents **one sample**.
- The first row contains run-level information such as Run Name, Run Comments, and so on.
- For demultiplexed samples **only, one additional row** per barcode/Bio Sample Name combination is added below the master sample row.

Note: Specifying cluster settings configuration is **not yet** supported from the Run Design CSV

Outputting Subreads on the Sequel IIe system

The Sequel IIe system can be configured to output Subreads data in BAM format by using the Run Design CSV import mechanism. In addition to the other required columns, users can add the column **Emitted Subreads Percent** to the CSV file, with a value of 0-100 for a given collection. This results in the inclusion of Subreads from 0-100% of ZMWs in the Data Set transferred from the instrument, in a BAM file **separate** from the HiFi reads. Note that this will **not** result in the inclusion of associated scraps data for each ZMW.

<table>
<thead>
<tr>
<th>Run Design attribute</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment Name</td>
<td>No</td>
<td>Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only. Defaults to Run Name. Example: Standard_Edna.1</td>
</tr>
<tr>
<td>Experiment Id</td>
<td>No</td>
<td>Enter a valid experiment ID. Example: 325/3250057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Experiment IDs cannot contain the following characters: <code><</code>, <code>></code>, <code>:</code>, <code>", </code>`, `</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Experiment IDs cannot start or end with a <code>/</code> and cannot have two adjacent <code>/</code> characters, such as <code>/</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Experiment IDs cannot contain spaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specifically, Experiment IDs cannot satisfy the regular expressions: <code>/\[<>:"|\?*\]/g, /((?:^|)|||||\(\?|\$)|, /|g</code></td>
</tr>
<tr>
<td>Experiment Description</td>
<td>No</td>
<td>Enter any ASCII string. Defaults to Run Comments. Example: 20170530_A6_VVnC_SampleSheet</td>
</tr>
<tr>
<td>Run Name</td>
<td>Yes</td>
<td>Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only. Run name must be entered for the first cell and will be applied to the remaining cells in the run. Example: 20170530_A6_VVnC_SampleSheet</td>
</tr>
<tr>
<td>System Name</td>
<td>No</td>
<td>Must be Sequel II or Sequel IIe.</td>
</tr>
<tr>
<td>Run Comments</td>
<td>No</td>
<td>Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only. Example: ecoliK12_March2021</td>
</tr>
<tr>
<td>Run Design attribute</td>
<td>Required</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Is Collection | No | Enter a Boolean value. (See Boolean details below.) Specifies whether the row designates a Collection (TRUE) or a barcoded sample (FALSE).
 • Collection lines should have the **Barcode Name** and **Bio Sample Name** fields blank.
 • Barcoded Sample lines only need to include the Is Collection, Sample Name, Barcode Name, and Bio Sample Name fields. |
| Sample Well | Yes | Must be specified in every row. Well number must start with a letter A through H, and end in a number 01 through 12, i.e. A01 through H12. It must satisfy the regular expression `/^[A-H](?:0[1-9]|1[0-2])$/`
 Example: A01 |
| Well Sample Name | Yes | Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only.
 Example: A6_3230046_A01_SB_ChemKitv2_8rxnKit
 Note: The Sample Name must be unique within a run. |
| Movie Time per SMRT Cell (hours) | Yes | Enter a floating point number between 0.1 and 30. Time is in hours.
 Example: 5 |
| Use Adaptive Loading | No | Enter a Boolean value. (See Boolean details below.) |
| Loading Target (P1 + P2) | No | Enter a floating point number between 0.01 and 1.
 Example: 0.4 |
| Maximum Loading Time (hours) | No | Enter a floating point number between 1 and 2. Time is in hours.
 Example: 1.2 |
| Sample Comment | No | Enter alphanumeric characters, spaces, hyphens, underscores, colons, or periods only.
 Example: A6_3230046_A01_SB_BindKit_ChemKit |
| Insert Size (bp) | Yes | Enter an integer ≥10. Units are in base pairs.
 Example: 2000 |
| On Plate Loading Concentration (pM) | No | Enter a floating point number. Units are in parts per million.
 Example: 5 |
| Size Selection | No | Enter a Boolean value. (See Boolean details below.) Default is FALSE. |
| Template Prep Kit Box Barcode | Yes | Enter or scan a valid kit barcode. (See Kit Barcode Requirements details below.) Working example: DM1117100259100111716 |
| DNA Control Complex Box Barcode | No | Enter or scan a valid kit barcode. (See Kit Barcode Requirements details below.) Working example: DM1234101084300123120
 Note: The Sample Name must be unique within a run. |
| Binding Kit Box Barcode | Yes | Enter or scan a valid kit barcode. (See Kit Barcode Requirements details below.) Working example: DM1117100862200111716 |
| Sequencing Kit Box Barcode | Yes | Enter or scan a valid kit barcode. (See Kit Barcode Requirements details below.) Working example: DM0001100861800123120 |
| Automation Name | No | Enter **diffusion** (not case-sensitive) or a custom script. (Sequel II systems do not support magbead loading.)
 A path can also be used, such as /path/to/my/script/my_script.py. The path will not be processed further, so if the full URI is required, it must be included in the CSV, such as chemistry://path/to/my/script/my_script.py. |
| Automation Parameters | No | To enable Pre-Extension time, enter the number of hours and set the boolean value to TRUE.
 Example 2 hours:
 ExtensionTime=double:2|ExtendFirst=boolean:TRUE
 Note: Leave blank when not using Pre-Extension time, or set the boolean value to FALSE. |
<table>
<thead>
<tr>
<th>Run Design attribute</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
</table>
| Detect and Resolve Heteroduplex Reads | No | Enter a boolean value. (See Boolean details below.) Set to **TRUE** to allow for detection of heteroduplex reads. **Note:** Only applicable if **Application** is set to one of the following:
 • Adeno-Associated Virus
 • <3kb Amplicons
 • >=3kb Amplicons
 • Custom |
| Include 5mC Calls in CpG Motifs | No | Enter a boolean value. (See Boolean details below.) Set to **TRUE** to allow for 5mC calls in CpG motifs. **Note:** Only applicable if **Application** is set to **HiFi Reads** or **Custom**. |
| Sample is Barcoded | No | Enter a boolean value. (See Boolean details below.) Set to **TRUE** for a barcoded run. **Note:** Only applicable if **Application** is set to **HiFi Reads** or **Custom**. |
| Demultiplex Barcodes | No | Add any of the following values: Do Not Generate, In SMRT Link, or On Instrument. **Note:** This is available for all applications. The following values are recommended based upon your system:
 • **Sequelize II system:** Enter one of the following values: Do Not Generate or In SMRT Link.
 • **Sequelize IIe system:** Enter one of the following values: Do Not Generate, In SMRT Link, or On Instrument. |
| CCS Analysis Output - Include Low Quality Reads | No | Enter a boolean value. (See Boolean details below.)
 • Set to **TRUE** to allow for CCS analysis with **--all** mode activated and produce a reads.bam file
 • Set to **FALSE** to exclude all reads with **rq** < 0.99. |
| Barcode Set | No | Must be a UUID for a Barcode Set present in the database. **Note:** This field is used for demultiplexed data.
 To find the UUID: Click **Data Management > View Data > Barcodes**.
 Click the Barcode file of interest, then view the UUID.
 Example: dad4949d-f637-0979-b5d1-9777eff62008
 Note: This field is used for demultiplexed data. |
| Same Barcodes on Both Ends of Sequence | No | Enter a boolean value. (See Boolean details below.) Set to **TRUE** if symmetric, **FALSE** if asymmetric. |
| Barcode Name | No | Enter Barcode Names one per line.
 Example: bc1001--bc1001
 • Use double hyphens (--) to separate the 2 barcodes of each pair.
 • The barcode names **must** be contained within the specified Barcode Set.
 • A given barcode name **cannot** appear more than once in the spreadsheet.
 • A maximum of 15,000 barcodes is permitted per sample. |
| Bio Sample Name | Yes | Enter Bio Sample Names in the same row as their associated Barcode Names. Use alphanumeric characters, spaces (allowed but not recommended for compatibility with downstream software), hyphens, underscores, colons, or periods only. Bio Sample Names **cannot** be longer than 40 characters.
 Example: sample1
 Note: This field is used for collections for non-multiplexed data, and for barcoded samples in multiplexed data. |
<table>
<thead>
<tr>
<th>Run Design attribute</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
</table>
| Pipeline ID | No | **Note**: This field is **required** to create an Auto Analysis.
- **5mC CpG Detection**: cromwell.workflows.pb_detect_methyl
- **Demultiplex Barcodes**: cromwell.workflows.pb_demux_ccs
- **Export Reads**: cromwell.workflows.pb_export_ccs
- **Genome Assembly**: cromwell.workflows.pb_assembly_hifi
- **HiFi Mapping**: cromwell.workflows.pb_align_ccs
- **HiFiViral SARS CoV-2 Analysis**: cromwell.workflows.pb_sars_cov2_kit
- **Iso-Seq Analysis**: cromwell.workflows.pb_isoseq3_ccsOnly
- **Mark PCR Duplicates**: cromwell.workflows.pb_mark_duplicates
- **Microbial Genome Analysis**: cromwell.workflows.pb_microbial_analysis
- **Minor Variants Analysis**: cromwell.workflows.pb_mv_ccs
- **Structural Variant Calling**: cromwell.workflows.pb_sv_ccs
- **Trim Ultra-Low Adapters**: cromwell.workflows.pb_trim_adapters |
| Analysis Name | No | Enter any ASCII string. See Auto Analysis Fields below for details.
Note: This field is required for Auto Analysis, otherwise the name will be "".
Example: sample 1 analysis |
| Entry Points | No | Entry Points only apply to Barcode Sets and Reference Sets. In addition, this field is **required** for Auto Analysis.
Enter an ASCII string in the format **file_type;entry_id;uuid**, with parameters separated by | characters.
- To find the UUID: Click **Data Management > View Data > HiFi Reads or Subreads**. Click the Data Set of interest, then view the UUID.
- See the [SMRT® Tools reference guide](#) section **Appendix A - Application entry points and output files** to see the entry point names for each application.
Example: PacBio.DataSet.BarcodeSet;eid_barcode;afe89e3f-17ca-e9b8-ee9-b701dbf02d4bPacBio.DataSet.ReferenceSet;eid_ref_dataset;6b8db144a601-4577-ab04-ba64cadc0548 |
| Task Options | No | Enter an ASCII string containing the options for the application referred to in the Pipeline ID field, with parameters separated by "," characters: **task_id;value_type:value.**
Example: pbmm2_align.task_options.minalnlength;integer;50
Note: This field is **optional** for Auto Analysis - any task options not specified will use pipeline defaults. |
CSV file general requirements

- Each line in the CSV file represents one sample.
- The CSV file may only contain ASCII characters. Specifically, it must satisfy the regular expression `/^[\x00-\x7F]*$/g`

Boolean values

- Valid boolean values for true are: true, t, yes, or y.
- Valid boolean values for false are: false, f, no, or n.
- Boolean values are not case-sensitive.

Kit barcode requirements

Kit barcodes are composed of three parts used to make a single string:

1. Lot Number (Example: DM1234)
2. Part Number (Example: 100-619-300)
3. Expiration Date (Example: 2020-12-31)

For the above example, the full kit barcode would be:
DM1234100619300123120.

Each kit must have a valid Part Number and cannot be obsolete. The list of kits can be found through a services endpoint such as:

[server name]:[services port number]/smrt-link/bundles/chemistry-pb/active/files/definitions%2FPacBioAutomationConstraints.xml

This services endpoint will list, for each kit, the part numbers (PartNumber) and whether it is obsolete (IsObsolete).
Dates must also be valid, meaning they must exist in the Gregorian calendar.

Auto Analysis fields

- The fields include Pipeline ID, Analysis Name, Entry Points, and Task Options.
- You can define one analysis for each Collection or Bio Sample. The Pipeline ID, Analysis Name and Entry Points fields are **required** to create an Auto Analysis.
- The analysis name is a concatenation of the values of the **Analysis Name** and **Bio Sample Name** fields.
- The Task Options field may be left blank; any task options not specified will use pipeline defaults.
Run QC

Use SMRT Link's Run QC module to monitor performance trends and perform run QC remotely.

Metrics can be reviewed in the Run QC module. All Sequel II systems connected to SMRT Link can be reviewed using Run QC.

1. Access SMRT Link using the Chrome web browser.
2. Select Run QC.

Accessing instrument status

1. Select Instrument Status. For each instrument connected to the instance of SMRT Link, this displays the instrument name and its current status, SMRT Cell status, when the run will be completed, any active alarms, and how many sequencing ZMWs are active.

- A red alarm symbol displays next to the instrument status if any errors or warnings appear during a sequencing run.
- If an instrument does not have a SMRT Cell tray loaded, the SMRT Cell Status field will not display any icons. The icons are:
 - Fully green: The SMRT Cell has completed sequencing.
 - Half green: The SMRT Cell is being prepared or is currently sequencing.
 - White: The SMRT Cell is in the queue for sequencing, but cell preparation has not started.
• **Run Completion**: Displays the estimated time remaining to complete sequencing run or the time elapsed since the sequencing run completed. Also displays the date (in YYYY-MM-DD format) when the last sequencing run was completed.

• **Sequencing ZMWs**: Displays a plot of how many ZMWs on a SMRT Cell are actively sequencing during a movie collection. For sequencing runs conducted with Binding kit 2.2 and 3.2, **only** the number of actively sequencing singly-loaded ZMWs (P1) displays. For sequencing runs conducted with Binding kit 2.1 and 3.1, the **total** number of actively sequencing ZMWs (P1 + P2) displays.

Note: Due to terminations, not all ZMWs are singly-loaded at the same time. Some ZMWs are singly-loaded only **at or near the end** of a movie collection, whereas others are singly-loaded only at the **beginning**. (**Singly-loaded** means that the ZMW contains only one active polymerase instead of two or more simultaneously active polymerases.) For runs conducted with Binding kit 2.2 and 3.2, the peak concurrent **Sequencing ZMWs** value shown in the plot will always be **less** than the final %P1 ZMW yield reported in the Run QC metrics table at the end of a movie collection. (For sequencing runs conducted with Binding kit 2.1 and 3.1, the peak concurrent Sequencing ZMWs value shown in the plot will always be **higher** than the final %P1 ZMW yield reported in Run QC.)

For a SMRT Cell that achieves ≥50% P1 loading and ≥10% P0, the ZMW Sequencing plot should typically display a peak value above 2,000,000.

See the figure below for an example comparison between the **Instrument Status report** (top) and **Run QC report** (bottom) for a WGS sample sequenced using Binding kit 3.2 with a 30-hour movie collection time. The Sequencing ZMWs plot in the Instrument Status report shows that the peak concurrent Sequencing ZMWs value for the last SMRT Cell in the run (Well D01) is approximately 3,000,000 ZMWs, whereas the final %P1 ZMW yield reported in the corresponding Run QC metrics table for Well D01 is 76.8% (or 6,144,000 P1 ZMWs.)
Accessing run information

1. Select **Run Status**.
2. Click **Sequel II** or **Sequel Ile** to view informations on runs for a specific instrument model.
3. Runs can be sorted and searched for:
 - To sort runs, click a **column title**.
 - To search for a run, enter a unique search string into the **Search** field.
4. Click the run to view information about that run.
5. To **export** Run QC data in CSV format: Select one or more runs in the table, then click **Export Selected**.

Table fields

Note: Not all table fields are shown by default. To see additional table fields, click the > symbol next to a column title.

- **Name**: A list of all runs for the instruments connected to SMRT Link. Click a run name to view more detailed information on the individual run page.
- **Summary**: A description of the run.
- **Dates**
 - **Run Date**: The date and time when the run was started.
 - **Completion Date**: The date and time the run was completed.
 - **Transferred Date**: The date and time the run results were transferred to the network.
- **Created By**: The name of the user who created the run.
- **Status**: The current status of the run. Can be one of the following: **Running**, **Complete**, **Failed**, **Terminated**, or **Unknown**.
- **Instrument Details**
 - **Instrument Name**: The name of the instrument.
 - **Instrument SN**: The serial number of the instrument.
 - **Instrument SW**: The versions of Sequel Instrument Control Software (ICS) installed on the instrument.
- **Cells**
 - **Total**: The total number of SMRT Cells used in the run.
 - **Completed**: The number of SMRT Cells that generated data for the run.
- **Failed**: The number of SMRT Cells that failed to generate data during the run.
 - **Run ID**: An internally-generated ID number identifying the run.
 - **Primary Analysis SW**: The version of Primary Analysis software installed on the instrument.
 - **UUID**: Another internally-generated ID number identifying the run.

6. Click the **Run name** of interest. Following are the fields and metrics displayed.

- **Run Start**: The date and time when the run was started.
- **Run Complete**: The date and time the run was completed.
- **Transfer Complete**: The date and time that the run data was successfully transferred to the network.
- **Run ID**: An internally-generated ID number identifying the run.
- **Description**: The description, as defined when creating the run.
- **Instrument**: The name of the instrument.
- **Instrument SN**: The serial number of the instrument.
- **Instrument Control SW Version**: The versions of Sequel Instrument Control Software (ICS) installed on the instrument.
- **Instrument Chemistry Bundle**: The version of the Chemistry Bundle installed on the instrument when the run was initiated.
- **Primary SW Version**: The versions of Primary Analysis software installed on the instrument.

7. Click the > arrow at the top of the **Consumables** table to see the sample wells used, consumable type, lot number, expiration date, and other information.
Run settings and metrics

Note: Click **Expand All** to expand all of the table columns. Click **Collapse All** to collapse the table columns.

- **Well:** The ID of an individual well used for this sample.
- **Sample Information**
 - **Name:** The sample name, as defined when creating the run. Clicking the name will take you to the corresponding entry in the Data Management module.
 - **Comment:** Sample comment, entered in Run Design.
- **Run Settings**
 - **Movie Time (hrs):** The length of the movie associated with this SMRT Cell.
 - **Loading Concentration (pM):** The on-plate loading concentration, in picomolarity.
 - **Pre-extension Time (hrs):** The pre-extension time used in the collection, if any.
 - **Workflow:** The instrument robotics workflow used for the run.
 - **Loading Time:** The time the system took for loading to progress before proceeding to sequencing.
- **Status:** The current collection status for the SMRT Cell. This can be one of the following: **Complete, Collecting, Aborted, Failed, In Progress, or Pending.**
- **Total Bases (Gb):** Calculated by multiplying the number of productive (P1) ZMWs by the mean polymerase read length; displayed in Gigabases.
- **Unique Molecular Yield (Gb):** The sum total length of unique single molecules that were sequenced. It is calculated as the sum of per-ZMW median subread lengths.
- **Productivity (%)**
 - **P0:** Empty ZMW; no signal detected.
 - **P1:** ZMW with a high quality read detected.
 - **P2:** Other, signal detected but no high quality read.
- **Reads:** Polymerase reads are trimmed to the high-quality region and include bases from adapters, as well as potentially multiple passes around a SMRTbell template.
 - **HiFi Reads ≥Q20 Reads:** The total number of CCS reads whose quality value is equal to or greater than 20.
 - **HiFi Reads Yield:** The total yield (in base pairs) of the CCS reads whose quality value is equal to or greater than 20.
 - **HiFi Reads Mean Length:** The mean read length of the CCS reads whose quality value is equal to or greater than 20.
 - **HiFi Reads Median QV:** The median number of CCS reads whose quality value is equal to or greater than 20.
 - **Polymerase Read Length Mean:** The mean high-quality read length of all polymerase reads. The value includes bases from adapters as well as multiple passes around a circular template.
Polymerase Read Length N50: 50% of all read bases came from polymerase reads longer than this value.

Longest Subread Mean: The mean subread length, considering only the longest subread from each ZMW.

Longest Subread N50: 50% of all read bases came from subreads longer than this value when considering only the longest subread from each ZMW.

- Control
 - Poly RL Mean (bp): The mean polymerase read length of the control reads.
 - Total Reads: The number of control reads obtained.
 - Concordance Mean: The average concordance (agreement) between the control raw reads and the control reference sequence.
 - Concordance Mode: The median concordance (agreement) between the control raw reads and the control reference sequence.

- Local Base Rate: The average base incorporation rate, excluding polymerase pausing events.

- Template
 - Missing Adapter (%): The percent of pre-filter ZMWs that are missing adapters.
 - Adapter Dimer: The percent of pre-filter ZMWs which have observed inserts of 0-10 bp. These are likely adapter dimers.
 - Short Insert: The percent of pre-filter ZMWs which have observed inserts of 11-100 bp. These are likely short fragment contamination.

8. View plots for each SMRT Cell where data was successfully transferred. Clicking on an individual plot displays an expanded view. These plots include:

- Polymerase Read Length: Plots the number of reads against the polymerase read length.
- Control Polymerase RL: Displays the polymerase read length distribution of the control, if used.
- Control Concordance: Maps control reads against the known control reference and reports the concordance.

- Base Yield Density: Displays the number of bases sequenced in the collection, according to the length of the read in which they were observed. Values displayed are per unit of read length (i.e. the base yield density) and are averaged over 2000 bp windows to gently smooth the data. Regions of the graph corresponding to bases found in reads longer than the N50 and N95 values are shaded in medium and dark blue, respectively.

- Read Length Density: Displays a density plot of reads, hexagonally binned according to their high-quality read length and median subread length. For very large insert libraries, most reads consist of a single subread and will fall along the diagonal. For shorter inserts, subreads
will be shorter than the HQ read length, and will appear as horizontal features. This plot is useful for quickly visualizing aspects of library quality, including insert size distributions, reads terminating at adapters, and missing adapters.

- **HiFi Read Length Distribution**: Displays a histogram distribution of HiFi reads (QV \(\geq 20 \)), other CCS reads (three or more passes, but QV <20), and other reads, by read length.

- **Read Quality Distribution**: Displays a histogram distribution of HiFi reads (QV \(\geq 20 \)) and other CCS reads by read quality.

- **Read Length vs Predicted Accuracy**: Displays a heat map of CCS read lengths and predicted accuracies. The boundary between HiFi reads and other CCS reads is shown as a dashed line at QV 20.

- **5mC Detections**: If 5mC calling in CpG motifs was performed, this plot displays a reverse cumulative distribution of all detected CpG motifs according to their predicted probability of methylation.
Data Management

Use the Data Management module to:

• Create and manage Data Sets,
• View Data Set information,
• Create and manage Projects,
• View, import, export, or delete sequence, reference, and barcode data.

What is a Data Set?

Data Sets are logical collections of sequencing data (basecalled or analyzed) that are analyzed together, and for which reports are created.

Data Sets:

• Help to organize and manage basecalled and analyzed data. This is especially valuable when dealing with large amounts of data collected from different sequencing runs from one or more instruments.
• Are the way that sequence data is represented and manipulated in SMRT Link. Sequence data from the instrument is organized in Data Sets. Data from each cell or collection is a Data Set.
• Can be used to collect data and summarize performance characteristics, such as data throughput, while an experiment is in progress.
• Can be used to generate reports about data, and to exchange reports with collaborators and customers.
• Can be used to start a job. (See “Starting a job from a Data Set” on page 37 for details.)

A Data Set can contain sequencing data from one or multiple SMRT Cells or collections from different runs, or a portion of a collection with multiplexed samples.

For more information on Data Sets, click here.

In SMRT Link, movies, cells/collections, context names and well samples are all in one-to-one relationships and can be used more or less interchangeably. That is, a Data Set from a single cell or collection will also be from a single collection derived from DNA from a single well sample. Data produced by SMRT Cells, however, can be used by multiple Data Sets, so that data may have a many-to-one relationship with collections.

Some Data Sets can contain basecalled data, while others can contain analyzed data:

• Basecalled data Data Sets contain sequence data from one or multiple cells or collections.
• Analyzed data Data Sets contain data from previous analyse(s).
Elements within a Data Set are of the same data type, typically subreads or consensus reads, in aligned or unaligned format.

Creating a Data Set

1. Access SMRT Link using the Chrome web browser.
2. Select **Data Management**.
3. Data Sets can be sorted and searched for:
 - To sort Data Sets, click a **column title**.
 - To search for a Data Set, use the Search function. See “Appendix B - Data search” on page 136 for details.
4. Click **+ Create Data Set**.
5. Enter a name for the new Data Set.
6. Select the type of data to include in the new Data Set:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

 The Data Sets table displays the appropriate Data Sets available.
7. (Optional) Specify the **Project** that this new Data Set will be associated with using the **Projects** menu (located at the top-right of
the Data Management page.) **General Project:** This Data Set will be visible to all SMRT Link users. **All My Projects:** This Data Set will be visible only to users who have access to Projects that you are a member of.

Note: Selecting a Project also filters the Data Sets that you can use when creating the new Data Set.

8. In the Data Sets table, select one or more sets of sequence data.
9. **(Optional)** Choose how to view the Data Set table: 1) Tree Mode - A barcoded Data Set displays as one row. 2) Flat Mode - A barcoded Data Set and its demultiplexed subsets display as separate rows.
10. **(Optional)** Use the Search function to search for specific Data Sets. See “Appendix B - Data search” on page 136 for details.
11. **(Optional)** If you selected one Data Set only, click the Filter Reads by Length box above the Data Set list. Enter the minimum and/or maximum length to retain in the new Data Set.
12. **(Optional)** If you selected one Data Set only, click the Filter Reads by QV ≥ box above the Data Set list. Enter the minimum quality value to retain in the new Data Set.
13. Click Save Data Set. The new Data Set becomes available for starting analyses, viewing, or generating reports.
14. After the Data Set is created, click its name in the main Data Management screen to see reports, metrics, and charts describing the data included in the Data Set. See “Data Set QC reports” on page 37 for details.

Viewing Data Set information

1. On the home page, select Data Management.
2. Click View > Data and select the type of Data Set to view:
 - **HiFi reads:** Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads:** Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

The Data Sets table displays the appropriate Data Sets available.

3. **(Optional)** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.
4. Click the name of the Data Set to see information about the sequence data included in the Data Set, as well as QC reports.

Copying a Data Set

1. On the home page, select Data Management.
2. Click View > Data and select the type of data to copy:
 - **HiFi reads:** Reads generated with CCS analysis whose quality value is equal to or greater than 20.
- **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

The Data Sets table displays the appropriate Data Sets available.

3. **(Optional)** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.

4. Click the name of the Data Set to copy. The Data Set Reports page displays.

5. Click **Copy**. The main Data Management page displays; the new Data Set has *(copy)* appended to the name.

Deleting a Data Set

Note: SMRT Link's Delete Data Set functionality deletes the Data Set from the SMRT Link interface only, **not** from your server.

It is good practice to export Data Sets you no longer need to a backup server, then delete them from SMRT Link. This frees up space in the SMRT Link interface.

1. On the home page, select **Data Management**.
2. Click **View > Data** and select the type of data to delete:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

The Data Sets table displays the appropriate Data Sets available.

3. **(Optional)** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.

4. Click the name of the Data Set to delete.

5. Click **Delete**. Note that this deletes the Data Set from the SMRT Link interface **only**, **not** from your server. To delete the Data Set from your server, manually delete it from the disk.

6. Click **Yes**. The Data Set is no longer available from SMRT Link.

Starting a job from a Data Set

From the Data Set reports page, a job can be started using the Data Set.

1. Click **Analyze...**, then name the job and click **Next**.

2. Follow the instructions starting at Step 12 of “Creating and starting a job” on page 44.

Data Set QC reports

The Data Set QC reports are generated when you create a new Data Set or update the data contained in existing Data Sets. These reports are designed to provide all relevant information about the data included in the Data Set as it comes from the instrument prior to data analysis, and are useful for data QC purposes.
The following reports are generated by default:

Data Set Overview > Status

Displays the following information about the Data Set:

- The Data Set Name, ID, description, and when it was created and updated.
- The number of reads and their total length in base pairs.
- The names of the run and instrument that generated the data.
- The biological sample name and well sample names of the sample used to generate the data.
- Path to the location on your cluster where the data is stored, which can be used for command-line navigation. For information on command-line usage, see SMRT® Tools reference guide (v11.0).

Completed Analyses

Lists all completed analyses that used the Data Set as input. To view details about a specific analysis, click its name.

Raw Data Report > Summary Metrics

- **Polymerase Read Bases**: The total number of polymerase read bases in the Data Set.
- **Polymerase Reads**: The total number of polymerase reads in the Data Set.
- **Polymerase Read Length (mean)**: The mean read length of all polymerase reads in the Data Set.
- **Polymerase Read N50**: The read length at which 50% of all the bases in the Data Set are in polymerase reads longer than, or equal to, this value.
- **Subread Length (mean)**: The mean read length of all subreads in the Data Set.
- **Subread N50**: The length at which 50% of all the subreads in the Data Set are longer than, or equal to, this value.
- **Insert Length (mean)**: The mean length of all the inserts in the Data Set.
- **Insert N50**: The length at which 50% of all the inserts in the Data Set are longer than, or equal to, this value.

Information on loading, control reads, and adapters is also displayed. Other information may display based on the Data Set type.
What is a Project?

- Projects are collections of Data Sets, and can be used to restrict access to Data Sets to a subset of SMRT Link users.
- By default, all Data Sets and data belong to the General Project and are accessible to all users of SMRT Link.
- Any SMRT Link user can create a Project and be the owner. Projects must have an owner, and can have multiple owners.
- Unless a Project is shared with other SMRT Link users, it is only accessible by the owner.
- Only owner(s) can delete a Project; deleting a Project deletes all Data Sets and analyses that are part of the Project.

Projects include:

- One or more Data Sets and associated Quality Control information.
- One or more analysis results and the associated Data Sets, including information for all analysis parameters and reference sequence (if used).

Data Sets and Projects

- Once created, a Data Set always belongs to at least one project; either the General project or another project the user has access to.
- Data Sets can be associated with multiple projects.
- The data represented by a Data Set can be copied into multiple projects using the Data Management report page Copy button. Any changes made to a particular copy of a Data Set affect only that copy, not any other copies in other Projects. If a Data Set is to be used with multiple Projects, PacBio recommends that you make a separate copy for each Project.
- Use the Projects menu (located at the top-right of the Data Management page) to filter the Data Sets displayed; this is based on which Projects the Data Sets are associated with.

Creating a Project

1. Access SMRT Link using the Chrome web browser.
2. Select **Data Management**.
3. Click **+ Create Project**.
4. Enter a name for the new project.
5. **(Optional)** Enter a description for the project.
6. Click **Select Data Sets** and select one or more sets of sequence data to associate with the project.
 - **(Optional)** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.
7. **(Optional)** Share the Project with other SMRT Link users. **(Note:** Unless a Project is shared, it is only visible to the owner.) There are two ways to specify who can access the new Project, using the controls in the **Members** section:
 - **Access for all SMRT Link Users:** *None* - No one can access the project other than the user who created it; *View* - Everyone can view the Project; *View/Edit* - Everyone can see and edit the Project.
 - **Access for Individual SMRT Link Users:** Enter a user name and click **Search By Name**. Choose **Owner**, **View**, or **View/Edit**, then click **Add Selected User**.
 - **Notes:** A) Projects can have multiple owners. B) If you enable all SMRT Link users to have **View/Edit** access, you cannot change an individual member’s access to **View**.
8. Click **Save**. The new project becomes available for SMRT Link users who now have access.

Editing a Project
1. On the home page, select **Data Management**.
2. Click **View > Projects**.
3. Projects can be sorted and searched for:
 - To sort Projects: Click a **column title**.
 - To search for a Project, use the Search function. See “Appendix B - Data search” on page 136 for details.
4. Click the name of the project to edit.
 - **(Optional)** Edit the Project name or description.
 - **(Optional)** Delete a Data Set associated with the Project: Click **X**.
 - **(Optional)** Add one or more sets of sequence data to the Project: Click **Select Data Sets** and select one or more Data Sets to add.
 - **(Optional)** Delete members: Click **X** next to a Project member’s name to delete that user from access to the Project.
 - **(Optional)** Add members to the Project: See Step 7 in **Creating a Project**.
5. Click **Save**. The modified Project is saved.

Deleting a Project
1. On the home page, select **Data Management**.
2. Click **View > Projects**.
3. Click the name of the Project to delete.
4. Click **Delete**. (This deletes all Data Sets and analyses that are part of the Project from SMRT Link, but not from the server.)

Viewing/deleting sequence, reference and barcode data

1. On the home page, select **Data Management**.
2. Click **View > Data**, then choose the type of data to view or delete:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.
 - **Barcodes**: Barcodes from barcoded samples.
 - **References**: Reference sequence FASTA files used when creating certain analyses.
3. **(Optional)** Use the Search function to search for specific Data Sets, barcode files or reference sequence files. See "Appendix B - Data search" on page 136 for details.
4. Click the name of the sequence, reference or barcode file of interest. Details for that sequence, reference sequence file or barcode file display.
5. **(Optional)** To delete the sequence data, reference sequence, or barcode file, click **Delete**.

Note: The **Copy** button is available for Subreads and HiFi reads, but not for Reference and Barcode data.

Importing sequence, reference and barcode data

Note: If your Sequel II system or Sequel IIe system is linked to the SMRT Link software during the instrument installation, your instrument data will be automatically imported into SMRT Link.

Several types of sequence data, as well as barcode files, can be imported for use in SMRT Link.

1. On the home page, select **Data Management**.
2. Click **Import Data**.
3. Specify whether to import data from the **SMRT Link Server**, or from a **Local File System**. (Note: Only references and barcodes are available if you select **Local File System**.)
4. Select the data type to import:
 - **Subreads**: XML file (.subreadset.xml) or ZIP file containing information about subreads from Sequel II systems, such as paths to the BAM files. Use only ZIP files created by SMRT Link.
 - **HiFi reads**: XML file (.consensusreadset.xml) or ZIP file containing information about HiFi reads (reads generated with CCS analysis whose quality value is equal to or greater than 20.) Use only ZIP files created by SMRT Link.
 - **Barcodes**: FASTA (.fa or .fasta), XML (.barcodeset.xml), or ZIP files containing barcodes.
 - **References**: FASTA (.fa or .fasta), XML (.referenceSet.xml), or ZIP files containing a reference sequence for use in starting analyses. **(Note:** If importing from a local system, Reference files must be smaller than 15 MB.)

 Note: FASTA files imported into SMRT Link must not contain empty lines or non-alphanumeric characters. The file name must not start with a number. For information about the file types listed here, click here.

5. Navigate to the appropriate file and click **Import**. The sequence data, reference, or barcodes are imported and becomes available in SMRT Link.

Exporting sequence, reference and barcode data
Two types of sequence data (HiFi reads and Subreads) can be exported, as well as barcode files and reference files.

1. On the home page, select **Data Management**.
2. Click **Export Data**.
3. Select the type of data to export:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.
- **Barcodes**: Files containing barcodes.
- **References**: Files containing a reference sequence for use in starting analyses.

4. **(Optional)** Use the Search function to search for Data Sets, barcode files, or reference files. See “Appendix B - Data search” on page 136 for details.

5. Select one or more sets of data to export. (Multiple data files are combined as one ZIP file for export.)

6. Click **Export Selected**.

![Dataset Export](image)

7. Navigate to the export destination directory.

8. **(Optional)** If exporting Data Sets, click **Delete data set files after export** to delete the Data Set(s) you selected from the SMRT Link installation. (Exporting, then deleting, Data Sets is useful for archiving Data Sets you no longer need.)

9. **(Optional)** If exporting Data Sets, click **Export PDF Reports** to create PDF files containing comprehensive information about the Data Set(s). Each PDF report contains extensive information about one Data Set, including loading statistics, run set up and QC information, analysis parameters and results including charts and histograms, and lists of the output files generated, all in one convenient document.

10. Click **Export**.
SMRT® Analysis

After a run has completed, use SMRT Link’s SMRT Analysis module to perform secondary analysis of the data.

Creating and starting a job

1. Access SMRT Link using the Chrome web browser.
2. Select SMRT Analysis.
3. Jobs can be sorted, searched for, and filtered:
 - To sort jobs, click a column title.
 - To search for a job, use the Search function. See "Appendix B - Data search" on page 136 for details.)
 - To filter the list of jobs based on their state: Click the funnel in the State column header, then click one or more of the categories of interest: Select All, Created, Running, Submitted, Terminated, Successful, Failed, or Aborted.
To filter the list of jobs based on the Project(s) that they are associated with: Click the Projects menu (located at the top-right of the main SMRT Analysis page) and select a Project. See “What is a Project?” on page 39 for details.

4. Click + Create New Job.

5. **Optional** Click Copy From..., choose a job whose settings you wish to reuse, then click Select. The job name and the Data Type are filled in. Go to Step 10 to select Data Set(s).

6. Enter a name for the job.

7. Specify the type of job to create:
 - **Analysis** - Uses applications designed to produce biologically-meaningful results. These applications only accept HiFi reads.
 - **Auto Analysis** - For information on the Auto Analysis feature, see “Automated analysis” on page 115 for details.
 - **Data Utility** - Data processing utilities used as intermediate steps to producing biologically-meaningful results.

8. If you selected Data Utility, select the type of data to use for the job:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

9. **Optional** Specify the Project that this job will be associated with using the Projects menu (located at the top-right of the SMRT Analysis page.) **General Project**: This job will be visible to all SMRT Link users. **All My Projects**: This job will be visible only to users who have access to Projects that you are a member of. To restrict access to a job, make sure to select a Project limited to the appropriate users before starting the job.

 Note: Selecting a Project also filters the Data Sets that you can use when creating the job.

10. In the Data Sets table, select one or more sets of data to be analyzed.
 - **Optional** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.
 - **Optional** Choose how to view the Data Set table: 1) Tree Mode - A barcoded Data Set displays as one row. 2) Flat Mode - A barcoded Data Set and its demultiplexed subsets display as separate rows.
 - **Optional** For Data Sets that include demultiplexed subsets, you can also select individual subsets as part of your selection. To do so:

 A) Click the Demultiplexed Subsets number link:
B) Select one or more subsets, then click Back:

C) Click the list image to view or edit the full Data Set selection. (The small blue number specifies how many Data Sets and/or subsets were selected):

Note: For information on the Auto Analysis feature, see “Automated analysis” on page 115 for details.

11. If you selected multiple Data Sets as input for the job, additional options become available:
- **One Analysis for All Data Sets**: Runs one job using all the selected Data Sets as input, for a maximum of 30 Data Sets.

- **One Analysis per Data Set - Identical Parameters**: Runs one separate job for each of the selected Data Sets, using the same parameters, for a maximum of 10,000 Data Sets. Later in the process, optionally click **Advanced Parameters** and modify parameters.

- **One Analysis per Data Set - Custom Parameters**: Runs one separate job for each of the selected Data Sets, using different parameters for each Data Set, for a maximum of 16 Data Sets. Later in the process, click **Advanced Parameters** and modify parameters. Then click **Start and Create Next**. You can then specify parameters for each of the included Data Sets.

- **Note**: The number of Data Sets listed is based on testing using PacBio's suggested compute configuration, listed in **SMRT Link software installation guide (v11.0)**.

12. Click **Next**.
13. Select a secondary analysis application or data utility from the drop-down list. (Different choices display based on your initial choice of **Analysis** or **Data Utility** in Step 7. See “PacBio® secondary analysis applications” on page 54 or “PacBio® data utilities” on page 90 for details.)

- Each of the secondary analysis applications/data utilities has **required parameters** that are displayed. Review the default values shown.
Secondary analysis applications/data utilities also have **advanced parameters**. These are set to default values, and need only be changed when analyzing data generated in non-standard experimental conditions.

14. **(Optional)** Click **Import Analysis Settings** and select a previously-saved CSV file containing the desired settings (including **Advanced Parameters**) for the selected application or data utility. The imported settings are set.

The **Iso-Seq** application will be used as an example. This application characterizes full-length transcript isoforms.

15. Click the **Reference Set** field and select a reference sequence from the dialog. (The reference sequences available in SMRT Link and displayed in the dialog were imported into SMRT Analysis. See “Importing sequence, reference and barcode data” on page 41 for details.)

16. **(Optional)** Click **Advanced Parameters** and specify the values of the parameters you would like to change. Click **OK** when finished. (Different applications/data utilities have different advanced parameters.)

 - To see information about parameters for all secondary analysis applications and data utilities provided by PacBio, see "PacBio® secondary analysis applications" on page 54 and "PacBio® data utilities" on page 90.
17. **(Optional)** Click **Export** to create a CSV file containing all the settings you specified for the application/data utility. You can then import this file when creating future jobs using the same application/data utility. You can also use this exported file as a template for use with later jobs.

18. **(Optional)** Click **Back** if you need to change any of the analysis attributes selected in Step 7.

19. Click **Start** to submit the job. (If you selected multiple Data Sets as input, click **Start Multiple Jobs** or **Start and Create Next**.)

20. Select **SMRT Analysis** from the Module Menu to navigate to the main SMRT Analysis screen. There, the status of the job displays. When the job has **completed**, click on its name - reports are available for the completed job.

21. **(Optional)** To **delete** the completed job: Click **Delete**, then click **Yes** in the confirmation dialog. The job is deleted from **both** the SMRT Link interface and from the server.

Starting a job after viewing sequence data

A job can be started by **first** viewing information about specific sequence data:

1. On the home page, select **Data Management**.
2. Click **View > Data** and select the type of Data Set to use:
 - **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.
 - **Subreads**: Reads containing the sequence from one or more single passes of a polymerase on a single strand of an insert within a SMRTbell template.

 The Data Sets table displays the appropriate Data Sets available.

3. **(Optional)** Use the Search function to search for Data Sets. See “Appendix B - Data search” on page 136 for details.
4. In the Name column, click the name of the sequence data of interest. Details for the selected sequence data display.

5. To start a job using this sequence data, click Analyze, then follow the instructions starting at Step 12 of “Creating and starting a job” on page 44.

Canceling a running job

1. On the home page, select SMRT Analysis.
2. Click the funnel in the State column header, then click Running. This displays only currently-running jobs.
3. Select a currently-running job to cancel.
4. Click Cancel.
5. Click Yes in the confirmation dialog. The cancelled job displays as Terminated.

Restarting a failed job

You can restart a failed job; the execution speed from the start to the original point of failure is very fast, which can save time and computing resources. The restarted job may run to completion, depending on the source of failure.

Note: As the restarted job uses information from the original failed job, do not delete the original job results.

If viewing the results page for the failed job: Click Restart.
If not viewing the results page for the failed job:

1. On the home page, select **SMRT Analysis**.
2. Click the funnel in the **State** column header, then click **Failed**. This displays only failed jobs.
3. Select a failed job to restart.
4. Click **Restart**.

Viewing job results

1. On the home page, select **SMRT Analysis**. You see a list of all jobs.
2. **(Optional)** Click the funnel in the **State** column header, then click **Successful**. This displays only successfully-completed jobs.
3. **(Optional)** Use the Search function to search for specific jobs. See “Appendix B - Data search” on page 136 for details.
4. Click the job link of interest.
5. Click **Analysis Overview > Status** to see job information status, including which application/data utility was used for the job, and the inputs used.
6. Click Analysis **Overview > Thumbnails** or **Display All** to view thumbnails of the reports generated for the job. Click the link under a thumbnail to see a larger image.
7. Depending on the application/data utility used for the job, different job-specific reports are available.
 - For mapping applications **only**: Click **Mapping Report > Summary Metrics** to see an overall summary of the mapping data.
 - For information on the reports and data files produced by analysis applications/data utilities, see “PacBio® secondary analysis applications” on page 54 or “PacBio® data utilities” on page 90.
8. To download data files created by SMRT Link: You can use these data files as input for further processing, pass on to collaborators, or upload to public genome sites. Click **Data > File Downloads**, then click
the appropriate file. The file is downloaded according to your browser settings.

9. (Optional) Specify prefix(es) used in the names of files generated by the job. Example: Run Name can be included in the name of every file generated by the job. Click Edit Output File Name Prefix, check the type(s) of information to append to the file names, then click Save.

10. To view job log details: Click Data > SMRT Link Log.

11. To visualize the secondary analysis results: See “Visualizing data using IGV” on page 118 for details.

Copying and running an existing job

If you run very similar jobs, you can copy an existing job, rename it, optionally modify one or more parameters, then run it.

1. On the home page, select SMRT Analysis. You see a list of all jobs.
2. (Optional) Click the funnel in the State column header, then click Successful. This displays only successfully-completed jobs.
3. (Optional) Use the Search function to search for specific jobs. See “Appendix B - Data search” on page 136 for details.
4. Click the job link of interest.
5. Click Copy - this creates a copy of the job, named Copy of <job name>, using the same parameters.
6. Edit the name of the job.
7. Click Next.
8. (Optional) Edit any other parameters. See “PacBio® secondary analysis applications” on page 54 or “PacBio® data utilities” on page 90 for further details.
9. Click Start.

Exporting a job

You can export the entire contents of a job directory, including the input sequence files, as a ZIP file. Afterwards, deleting the job saves room on the SMRT Link server; you can also later reimport the exported job into SMRT Link if necessary.

1. On the home page, select SMRT Analysis.
2. Click Export Job.
3. (Optional) Use the Search function to search for specific analyses. See “Appendix B - Data search” on page 136 for details.
4. Select one or more jobs to export. This exports the entire contents of the job directory.
5. Click Export Selected.
6. Select the output directory for the job data and click Export.

Importing a job

Note: You can only import a job that was created in SMRT Link, then exported.

1. On the home page, select SMRT Analysis.
2. Click **Import Job**.
3. Select a ZIP file containing the job to import.
4. Click **Import**. The job is imported and is available on the main SMRT Analysis page.
PacBio® secondary analysis applications

Following are the secondary analysis applications provided with SMRT Analysis v11.0. These applications are designed to produce biologically-meaningful results. Each application is described later in this document, including all analysis parameters, reports and output files generated by the application.

Note: These applications accept only HiFi reads as input.

Genome Assembly
• Generate de novo assemblies of genomes, using HiFi reads.
• See “Genome Assembly” on page 55 for details.

HiFi Mapping (was Mapping)
• Align (or map) reads to a user-provided reference sequence.
• See “HiFi Mapping” on page 58 for details.

HiFiViral SARS-CoV-2 Analysis
• Analyze multiplexed viral surveillance samples for SARS-CoV-2, using HiFi reads.
• See “HiFiViral SARS-CoV-2 Analysis” on page 62 for details.

Iso-Seq® Analysis
• Characterize full-length transcript isoforms, using HiFi reads.
• See “Iso-Seq® Analysis” on page 67 for details.

Microbial Genome Analysis
• Note: This combines and replaces the Microbial Assembly and Base Modification Analysis applications in the previous release.
• Generate de novo assemblies of small prokaryotic genomes between 1.9-10 Mb and companion plasmids between 2 – 220 kb, and identify methylated bases and associated nucleotide motifs.
• Optionally include identification of 6mA and 4mC modified bases and associated DNA sequence motifs.
• See “Microbial Genome Analysis” on page 74 for details.

Minor Variants Analysis
• Identify and phase minor single nucleotide substitution variants in complex populations.
• See “Minor Variants Analysis” on page 80 for details.

Structural Variant Calling
• Identify structural variants (Default: ≥20 bp) in a sample or set of samples relative to a reference.
• See “Structural Variant Calling” on page 86 for details.
Genome Assembly

Use this application to generate high quality *de novo* assemblies of genomes, using HiFi reads.

- The application accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.

The application includes seven main steps:

1. Convert input to a compressed database for fast retrieval.
2. Overlap reads using the Pancake tool.
3. Phase the overlapped reads using Nighthawk. Nighthawk also boosts contiguity of the assembly by removing overlaps between reads coming from different instances of a genomic repeat (such as segmental duplications.)
4. Remove chimeras and duplicate reads which do not span repeat regions. This improves contiguity and assembly quality.
5. Construct a string graph. Extract primary contigs and haplotigs. Haplotypes are represented by heterozygous bubbles.
6. Polish the contigs and haplotigs using phased reads. Phasing information is preserved. Polishing is done with Racon.
7. Identify potential haplotype duplications in the primary contig set using the purge_dups tool, and move them to the haplotig set. This final round of assembly processing is especially useful in high heterozygosity samples.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected application. The imported application settings are set.
- Click Export to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome Length</td>
<td>0</td>
<td>The approximate number of base pairs expected in the genome. This is used only for downsampling; if the value is ≤ 0, downsampling is disabled. Enter an integer, optionally followed by one of the metric suffixes: k, M or G. Example: 4500 k means "4,500 kilobases" or "4,500,000". M stands for Mega and G stands for Giga.</td>
</tr>
<tr>
<td>Downsampling coverage</td>
<td>0</td>
<td>The input Data Set can be downsampling to a desired coverage, provided that both the Downsampling Coverage and Genome Length parameters are specified and > 0. Downsampling applies to the entire assembly process, including polishing. This parameter selects reads randomly, using a fixed random seed for reproducibility.</td>
</tr>
</tbody>
</table>
Reports and data files

The Genome Assembly application generates the following reports:

Polished Assembly > Summary Metrics
Displays statistics on the contigs from the de novo assembly that were corrected by Racon.

- **Contig Type**: Primary or Haplotigs. Primary contigs represent pseudohaplotype assemblies, while haplotigs represent fully phased and assembled regions of the genome. Primary contigs are usually much longer than haplotigs due to allowed haplotype switching.
- **Polished Contigs**: The number of polished contigs.
- **Maximum Contig Length**: The length of the longest contig.
- **Mean Contig Length**: The mean length of the contigs.
- **Median Contig Length**: The median length of the contigs.
- **N50 Contig Length**: 50% of the contigs are longer than this value.
- **Sum of Contig Lengths**: The total length of all the contigs.
- **E-size (sum of squares/sum)**: The expected contig size for a random base in the polished contigs. Another interpretation: The area under the Nx curve (for x in range [0, 100]).
- **Number of Circular Contigs**: The number of assembled contigs that are circular.

Polished Assembly > Polished Contigs

- **Contig**: The name of the individual contig.
- **Length (bases)**: The length of the contig, in bases.
- **Circular**: Yes if the contig is circular, No if it isn't.
- **Percent Polished**: The percent of contig bases that were polished.
• **Number of Polishing Reads**: The number of reads used to perform polishing on this contig.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

• **Analysis Log**: Log information for the analysis execution.
• **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose **Data > SMRT Link Log**.)
• **Haplotigs**: The final polished haplotigs assembly, in FASTA format.
• **Primary Contigs**: The final polished primary contigs assembly, in FASTA format.
HiFi Mapping

Use this application to align (or map) data to a user-provided reference sequence. The HiFi Mapping application:

- Accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.
- Maps data to a provided reference sequence, and then identifies consensus and variants against this reference.
- Haploid variants and small indels, but not diploid variants, are called as a result to alignment to the reference sequence.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected utility. The imported utility settings are set.
- Click Export to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Reference Set (Required)

- Specify a reference sequence to align the SMRT Cells reads to and to produce alignments.

Consolidate Mapped BAMs for IGV (Default = OFF)

- By default, SMRT Link consolidates chunked BAM files for viewing in IGV if the combined size is not more than 10 GB. Setting this option to ON ignores the file size cutoff and consolidates the BAM files.
- Note: This setting can double the amount of storage used by the BAM files, which can be considerable. Make sure to have enough disk space available. This setting may also result in longer run times.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters to Add to the Data Set</td>
<td>NONE</td>
<td>A semicolon-separated (not comma-separated) list of other filters to add to the Data Set.</td>
</tr>
<tr>
<td>Minimum Mapped Length (bp)</td>
<td>50</td>
<td>The minimum required mapped read length, in base pairs.</td>
</tr>
<tr>
<td>Bio Sample Name of Aligned Dataset</td>
<td>NONE</td>
<td>Populates the Bio Sample Name (Read Group SM tag) in the aligned BAM file. If blank, uses the Bio Sample Name of the input file. Note: Avoid using spaces in Bio Sample Names as this may lead to third-party compatibility issues.</td>
</tr>
<tr>
<td>Minimum Gap-Compressed Identity (%)</td>
<td>70</td>
<td>The minimum required gap-compressed alignment identity, in percent. Gap-compressed identity counts consecutive insertion or deletion gaps as one difference.</td>
</tr>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
</tbody>
</table>
The HiFi Mapping application generates the following reports:

Target Regions > Target Regions
Displays the number (and percentage) of reads that hit target regions specified by an input BED file. This is useful for targeted DNA sequencing applications. (This report displays only if a BED file is specified when creating the analysis.)

- **Coordinates:** The chromosome coordinates, as specified in the input BED file.
- **Region:** The name of the region, as specified in the input BED file.
- **On-Target Reads:** The number (and percentage) of unique reads that map with any overlap to the target region.

Target Regions > Target Region Coverage
- Displays the number of hits per defined region of the chromosome.

Mapping Report > Summary Metrics
Mapping is local alignment of a read or subread to a reference sequence.

- **Mean Concordance (mapped):** The mean concordance of subreads that mapped to the reference sequence. Concordance for alignment is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).
- **Number of Alignments:** The number of alignments that mapped to the reference sequence.
- **Number of CCS reads (total):** The total number of CCS reads in the sequence.
- **Number of CCS reads (mapped):** The number of CCS reads that mapped to the reference sequence.
- **Number of CCS reads (unmapped):** The number of CCS reads not mapped to the reference sequence.
- **Percentage of CCS reads (mapped):** The percentage of CCS reads that mapped to the reference sequence.
- **Percentage of CCS reads (unmapped):** The percentage of CCS reads not mapped to the reference sequence.
- **Number of CCS Bases (mapped):** The number of CCS bases that mapped to the reference sequence.
• **CCS Read Length Mean (mapped)**: The mean read length of CCS reads that mapped to the reference sequence, starting from the first mapped base of the first mapped CCS read, and ending at the last mapped base of the last mapped CCS read.

• **CCS Read N50 (mapped)**: The read length at which 50% of the mapped bases are in CCS reads longer than, or equal to, this value.

• **CCS Read Length 95% (mapped)**: The 95th percentile of read length of CCS reads that mapped to the reference sequence.

• **CCS Read Length Max (mapped)**: The maximum length of CCS reads that mapped to the reference sequence.

Mapping Report > CCS Mapping Statistics Summary

Displays mapping statistics per movie.

• **Sample**: The sample name for which the following metrics apply.

• **Movie**: The movie name for which the following metrics apply.

• **Number of CCS Reads (mapped)**: The number of CCS reads that mapped to the reference sequence. This includes adapters.

• **CCS Read Length Mean (mapped)**: The mean read length of CCS reads that mapped to the reference sequence, starting from the first mapped base of the first mapped CCS read, and ending at the last mapped base of the last mapped CCS read.

• **CCS Read Length N50 (mapped)**: The read length at which 50% of the mapped bases are in CCS reads longer than, or equal to, this value.

• **Number of CCS Bases (mapped)**: The number of CCS bases that mapped to the reference sequence.

• **Mean Concordance (mapped)**: The mean concordance of subreads that mapped to the reference sequence. Concordance for alignment is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).

Mapping Report > Mapped CCS Read Length

• Histogram distribution of the number of mapped CCS reads by read length.

Mapping Report > Mapped CCS Reads Concordance

• Histogram distribution of the number of CCS reads by the percent concordance with the reference sequence. Concordance for CCS reads is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).

Mapping Report > Mapped Concordance vs Alignment Length

• Maps the percent concordance with the reference sequence against the alignment length, in base pairs.

Coverage > Summary Metrics

• **Mean Coverage**: The mean depth of coverage across the reference sequence.

• **Missing Bases**: The percentage of the reference sequence without coverage.

Coverage > Coverage Across Reference

• Maps coverage across the reference.
Coverage > Depth of Coverage
- Maps the reference regions against the percent coverage.

Coverage > Coverage vs. [GC] Content
- Maps (as a percentage, over a 100 bp window) the number of Gs and Cs present across the coverage. The number of genomic windows with the corresponding % of Gs and Cs is displayed on top. Used to check that no coverage is lost over extremely biased base compositions.

Data > File Downloads
The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- Analysis Log: Log information for the analysis execution.
- SMRT Link Log: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- Mapped Reads: All input reads that were mapped to the reference by the application.
- Coverage Summary: Coverage summary for regions (bins) spanning the reference sequence.
- Mapped BAM: The BAM file of subread alignments to the draft contigs used for polishing.
- Mapped BAM Index: The BAI index file for the corresponding Mapped BAM file.

Data > IGV Visualization Files
The following files are used for visualization using IGV; see “Visualizing data using IGV” on page 118 for details.

- Mapped BAM: The BAM file of subread alignments to the draft contigs used for polishing.
- Mapped BAM Index: The BAI index file for the corresponding Mapped BAM file.
Use this application to analyze multiplexed samples sequenced with the HiFiViral SARS-CoV-2 kit. For each sample, this analysis provides:

- Consensus sequence (FASTA).
- Variant calls (VCF).
- HiFi reads aligned to the reference (BAM).
- Plot of HiFi read coverage depth across the SARS-CoV-2 genome.

Across all samples, this analysis provides:

- Job summary table including passing sample count at 90 and 95% genome coverage.
- Sample summary table including, for each sample: Count of variable sites, genome coverage, read coverage, and probability of multiple strains, and other metrics.
- Plate QC graphical summary of performance across samples in assay plate layout.
- Plot of HiFi read depth of coverage for all samples.

Notes:

- The application accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis that have a quality value equal to or greater than Phred-scaled Q20.
- This application is for SARS-CoV-2 analysis only and is not recommended for other viral studies. The Wuhan reference genome is provided by default to run the application, but advanced users may specify other reference genomes. We have not tested the application with reference genomes other than the Wuhan reference genome.
- The application is intended to identify variable sites and call a single consensus sequence per sample. The output consensus sequence is produced based on the dominant variant observed. Minor variant information that passes through a default threshold may be encoded in the raw VCF, but does not get propagated into the consensus sequence FASTA.
- The HiFiViral SARS-CoV-2 Analysis application can be run using the Auto Analysis feature available in Run Design. This feature allows users to complete all necessary analysis steps immediately after sequencing without manual intervention. The Auto Analysis workflow includes CCS, Demultiplex Barcodes, and HiFiViral SARS-CoV-2 Analysis.

Auto Analysis in Run Design

Users may set the analysis to begin automatically after sequencing completes using Auto Analysis in Run Design. See “HiFiViral SARS-CoV-2: Creating Auto Analysis in Run Design” on page 116 for details.
HiFiViral SARS-CoV-2 application workflow

1. Process the reads using the mimux tool to trim the probe arm sequences.
2. Align the reads to the reference genome using pbmm2.
3. Call and filter variants using bcftools, generating the raw variant calls in VCF file format. Filtering in this step removes low-quality calls (less than Q20), and normalizes indels.
4. Filter low-frequency variants using vcfcons and generate a consensus sequence by injecting variants into the reference genome. At each position, a variant is called only if both the base coverage exceeds the minimum base coverage threshold (Default = 4) and the fraction of reads that support this variant is above the minimum variant frequency threshold (Default = 0.5). See here for details.

Preparing input data for the HiFiViral SARS-CoV-2 Analysis application

1. Run the Demultiplex Barcodes data utility, where the inputs are HiFi reads, and the primers are multiplexed barcode primers. (If HiFi reads have not been generated on the instrument, run CCS analysis first. See "Circular Consensus Sequencing (CCS)" on page 104 for details.)
 - The proper barcode sequences are provided by default: Barcoded M13 Primer Plate.
 - For the Same Barcodes on Both Ends of Sequence parameter, specify No; the barcode pairs are asymmetric.
 - Provide the correctly-formatted barcode pair-to-Bio Sample CSV file for the Assign Bio Sample Names to Barcodes option. (For details, see "Assign Bio Sample Names to Barcodes (Required)" on page 93.)

Running the HiFiViral SARS-CoV-2 Analysis application

1. After running the Demultiplex Barcode data utility, create a new job using SMRT Analysis > Create New Job.
2. Name the job.
3. Select all the demultiplex samples contained in the Data Set and choose Analysis of Multiple Data Sets > One Analysis for All Data Sets. Click Next.
4. Select HiFiViral SARS-CoV-2 Analysis from the Analysis Application list.
5. SARS-CoV-2 Genome NC_045512.2 (the Wuhan reference genome) is automatically loaded; advanced users may select a different reference if desired.
6. To generate the optional Plate QC graphical summary, click Advanced Parameters and load a CSV file using the provided template (assay-PlateQC_template_4by96.csv) as a guide.
7. Click OK, then Start.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected application. The imported application settings are set.
Click Export to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Reference Genome (Required)

Specify the full viral genome against which to align the reads and call variants. (The default is the Wuhan Reference genome.)

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate QC CSV</td>
<td>NONE</td>
<td>(Optional) Specify a CSV file to generate the Plate QC report, which displays analysis results for each sample in the assay plate. The CSV file must contain barcode (asymmetric pairs), Bio Sample Name, assay plate IDs (can include 1-4 plates with unique names; avoid special characters), and assay plate well IDS in the format A01, A02,...H12. (To create a new file, click Download Template, edit, and then save the CSV file.) The plate and well information corresponds to the location of samples during the SARS-CoV-2 enrichment assay.</td>
</tr>
<tr>
<td>Probes FASTA</td>
<td>NONE</td>
<td>Specify probe sequences in FASTA format if using probes other than the standard probes shipped in the HiFiViral SARS-CoV-2 Kit.</td>
</tr>
<tr>
<td>Minimum Base Coverage</td>
<td>4</td>
<td>Specify the minimum read depth at each position to report either a variant or a reference base. Positions with less than this specified coverage will have an N base output in the consensus sequence FASTA file. Increasing the minimum base coverage may result in more Ns and loss of variant detection. We do not recommend making this value lower than the default threshold of 4, as it may increase the number of false positive variants called.</td>
</tr>
<tr>
<td>Minimum Variant Frequency</td>
<td>0.5</td>
<td>Specify that only variants whose frequency is greater than this value are reported. This frequency is determined based on the read depth (DP) and allele read count (AD) information in the VCF output file. We recommend using the default value to properly call the dominant alternative variant while also filtering out potential artifacts.</td>
</tr>
<tr>
<td>Advanced Processing Options</td>
<td>NONE</td>
<td>Additional options to pass to the mimux preprocessing tool for trimming and filtering reads by probe sequences. Options should be entered in space-separated format. See the HiFiViral SARS-CoV-2 Analysis section of SMRT Tools reference guide (v11.0) for details.</td>
</tr>
<tr>
<td>Minimum Barcode Score</td>
<td>80</td>
<td>A barcode score measures the alignment between a barcode attached to a read and an ideal barcode sequence, and is an indicator of how well the chosen barcode pair matches. It ranges between 0 (no match) and 100 (a perfect match). This parameter specifies that reads with barcode scores below this minimum value are not included in analysis.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The HiFiViral SARS-CoV-2 Analysis application generates the following reports:
Summary Report > Summary Metrics

- **Samples**: The count of all input samples, whether or not they passed analysis.
- **Samples with Genome Coverage > 90%**: The number of samples where at least 90% of bases have at least four mapped reads overlapping their position.
- **Samples with Genome Coverage > 95%**: The number of samples where at least 95% of bases have at least four mapped reads overlapping their position.
- **Samples Failing Workflow**: The number of samples for which the analysis was unable to generate a per-sample report due to an absence of usable data.

Summary Report > Sample Summary

- **Bio Sample Name**: The name of the biological sample associated with the variants. (Note: Any spaces in the name are substituted by new line characters for consistency with output file names.)
- **Substitutions**: The count of all called substitutions in the consensus sequence for the sample.
- **Insertions**: The count of all called insertions in the consensus sequence for the sample.
- **Deletions**: The count of all called deletions in the consensus sequence for the sample.
- **Reads**: The total number of HiFi reads for the sample.
- **Read Coverage**: The mean number of mapped reads overlapping with each position in the reference genome.
- **On-Target Rate**: The mapping yield of reads; the number of unique mapped reads divided by the total number of reads.
- **Multiple Strains (Probability)**: Samples are flagged as having multiple strains if the probability is at least 0.95. Samples may contain multiple strains due to sample contamination or presence of multiple strains in the RNA extract. To classify a sample as multi-strain, we tolerate error by using the binomial cumulative distribution function (with a fixed probability of 0.2). This feature is supported for samples with Ct < 26 with minor frequencies > 20%. Samples must have > 70% genome coverage to be called Multiple Strains.
- **Ns**: The number of bases in the consensus sequence that are Ns.
- **Genome Coverage**: The percentage of bases with at least four mapped reads overlapping their position by default. See the Advanced Parameters dialog to adjust minimum base coverage.

Summary Report > Genome Coverage

- Coverage plot showing the per-sample mean read coverage within a window of 100 bp. The shaded region displays the 25th to 75th percentile in the range of coverage across all samples, and the darker solid line displays the median coverage across all samples.

Summary Report > Plate QC

Plot showing analysis results for each plate cell used. This plot is generated only if the user supplies a Plate QC CSV file mapping Bio Sample Names to Well IDs in Advanced Parameters.

- **Blue** wells represent samples with at least 95% coverage.
- **Green** wells represent samples with at least 90% coverage.
- **Yellow** wells represent samples that passed the workflow but had genome coverage worse than 90%.
- **Red** wells represent samples that failed the workflow.
• **White** wells do not include a sample.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **All Samples, HiFi Reads FASTQ**: HiFi reads in FASTQ format for all samples.
- **All Samples, Consensus Sequence FASTA**: The full consensus genomic sequences; bases for which no consensus could be called are represented by Ns. See the Advanced Parameters dialog to adjust the minimum base coverage for outputting Ns.
- **All Samples, Genome Coverage Plots**: Plots for individual samples showing coverage depth across the genome.
- **All Samples, Variant Call VCF**: VCF file containing the final variant calls per sample.
- **All Samples, HiFi Reads Mapped BAM**: BAM file for each sample containing the HiFi reads aligned to the reference genome.
- **All Samples, Consensus Sequence Aligned BAM**: BAM file for each sample of consensus sequence aligned to the reference genome. The consensus sequence is split into fragments where there are Ns and each fragment is mapped.
- **All Samples, Raw Variant Calls VCF**: VCF file containing the intermediate variant calls per sample.
- **Sample Summary Table CSV**: CSV version of the data shown in the Sample Summary table.
- **All Samples, Probe Counts TSV**: Tab-delimited text file containing per-sample, per-probe counts. This file can be used to identify samples that are poorly sequenced or probes with high or low coverages.
- **Sample Inputs CSV**: CSV version of the Plate QC CSV, if supplied in the Advanced Parameters dialog.
The Iso-Seq application enables analysis and functional characterization of full-length transcript isoforms for sequencing data generated on PacBio instruments.

- The application accepts HiFi reads (BAM format) as input. **HiFi reads** are reads generated with CCS analysis that have a quality value equal to or greater than Q20.

Notes on Multiplexed Data

There are two ways in which an Iso-Seq library can be multiplexed:

1. **Barcoded adapter Iso-Seq libraries**
 - If using the SMRTbell Barcoded Adapter with the Iso-Seq Express protocol on or after April 21, 2022, demultiplex the Data Set prior to running the Iso-Seq application.
 - To analyze the samples in a single Iso-Seq run, select all the demultiplexed Data Sets to combine and begin the Iso-Seq analysis.
 - If following the standard Iso-Seq Express protocol, select **Iso-Seq cDNA Primers** as the Primer Set.

2. **Barcoded cDNA primer Iso-Seq libraries**
 - If following multiplexing guidelines using the Iso-Seq Express protocol on or prior to April 21, 2022 and you ordered synthesized oligos listed in the Appendix 3 - **Recommended barcoded NEBNext single cell cDNA PCR primer and Iso-Seq Express cDNA PCR primer sequences** section of the document **Procedure & checklist - Preparing Iso-Seq® libraries using SMRTbell prep kit 3.0**, demultiplex your Data Set using the Iso-Seq application. In other words, do not run the Demultiplexing Barcodes utility first.
 - See the **Primer Set Selection** column below for the correct choice of primer sequences.

<table>
<thead>
<tr>
<th>Multiplexed method</th>
<th>Demultiplexed before Iso-Seq?</th>
<th>Primer set selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not multiplexed</td>
<td>NO</td>
<td>Iso-Seq cDNA Primers</td>
</tr>
<tr>
<td>Barcoded adapters</td>
<td>YES</td>
<td>Iso-Seq cDNA Primers</td>
</tr>
<tr>
<td>Barcoded cDNA primer</td>
<td>NO</td>
<td>Iso-Seq 12 Barcoded cDNA Primers Or Custom cDNA Primers</td>
</tr>
</tbody>
</table>

The application includes three main steps:

1. **Classify**: Identify and remove primers (which may be cDNA primers or barcoded cDNA primers). Identify full-length reads based on the asymmetry of 5’ and 3’ primers. Trim off polyA tails and remove artifactual concatemers.
2. **Cluster (Optional)**: Perform de novo clustering and consensus calling. Output full-length consensus isoforms that are further separated into high-quality (HQ) and low-quality (LQ) based on estimated accuracies.
3. **Collapse (Optional):** When a reference genome is selected, map HQ isoforms to the genome, then collapse redundant isoforms into unique isoforms.

To obtain full-length non-concatemer (FLNC) reads and *not* complete the Cluster step: Ensure that the **Run Clustering** option is set to **OFF**.

Iso-Seq determines two FLNC reads to be the same isoform, and will place them in the same cluster, if the two reads:

- Differ less than 100 bp on the 5’ end.
- Differ less than 30 bp on the 3’ end.
- Have no internal gaps that exceed 10 bp.

Iso-Seq will only output clusters that have at least two FLNC reads.

Importing/exporting analysis settings

- **Click** **Import Analysis Settings** and select a previously-saved CSV file containing the desired settings (including **Advanced Parameters**) for the selected application. The imported application settings are set.
- **Click** **Export** to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Primer Set (Required)

- Specify a primer sequence file in FASTA format to identify cDNA primers for removal. The primer sequence includes the 5’ and 3’ cDNA primers and (if applicable) barcodes.
- Primer IDs must be specified using the suffix `_5p` to indicate 5’ cDNA primers and the suffix `_3p` to indicate 3’ cDNA primers. The 3’ cDNA primer should not include the Ts and is written in reverse complement (see examples below).
- Each primer sequence must be unique.

Example 1: The Iso-Seq cDNA Primer primer set, included with the SMRT Link installation.

Users following the standard Iso-Seq Express protocol without multiplexing, or running a Data Set that has already been demultiplexed (either using Run Design or the SMRT Analysis application) should use this default option.

```
> IsoSeq_5p
GCAATGAAGTCGCAGGGTTGGG
> IsoSeq_3p
GTACTCTGCGTTGATACCACTGCTT
```

Example 2: The Iso-Seq 12 Barcoded cDNA Primers set, included with the SMRT Link installation.
Users using barcoded cDNA primers listed in the Appendix 3 - Recommended barcoded NEBNext single cell cDNA PCR primer and Iso-Seq Express cDNA PCR primer sequences section of the document Procedure & checklist - Preparing Iso-Seq® libraries using SMRTbell prep kit 3.0, should select this option.

>bc1001_5p
CACATATCAGAGTGCGGCAATGAAGTCGCAGGGTTGGGG
>bc1002_5p
ACACACACACTGTGAGGCAATGAAGTCGCAGGGTTGGGG
...

(There are a total of 24 sequence records, representing 12 pairs of F/R barcoded cDNA primers.)

Example 3: An example of a custom cDNA primer set. 4 tissues were multiplexed using barcodes on the 3’ end only.

> IsoSeq_5p
GCAATGAAGTCGCAGGGTTGGG
>dT_BC1001_3p
AAGCAGTTGTATCAACGCAGAGTACCACATATCAGAGTGCG
>dT_BC1002_3p
AAGCAGTTGTATCAACGCAGAGTACACACAGACTGTGAG
>dT_BC1003_3p
AAGCAGTTGTATCAACGCAGAGTACACACATCTCGTGAGAG
>dT_BC1004_3p
AAGCAGTTGTATCAACGCAGAGTACCACGCACACACGCGCG

Example 4: Special Handling for the TeloPrime cDNA Kit

The Lexogen TeloPrime cDNA kit contains As in the 3’ primer that cannot be differentiated from the polyA tail. For best results, remove the As from the 3’ end as shown below:

>TeloPrimeModified_5p
TGGATTGATATGTAATACGACTCACTATAG
>TeloPrimeModified_3p
CGCTTGAGA

Reference Set (Optional)

- Optionally specify a reference genome to align High Quality isoforms to, and to collapse isoforms mapped to the same genomic loci.

Run Clustering (Default = ON)

- Specify ON to generate consensus isoforms.
- Specify OFF to classify reads only and not generate consensus isoforms. The Reference Set will also be ignored.
Cluster Barcoded Samples Separately (Default = OFF)

• Specify OFF if barcoded samples are from the same species, but different tissues, or samples of the same genes but different individuals. The samples are clustered with all barcodes pooled.
• Specify ON if barcoded samples are from different species. The samples are clustered separately by barcode.
• In either case, the samples on the results page are automatically named BioSample_1 through BioSample_N.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require and trim Poly(A) Tail</td>
<td>ON</td>
<td>ON means that polyA tails are required for a sequence to be considered full length. OFF means sequences do not need polyA tails to be considered full length.</td>
</tr>
<tr>
<td>Minimum Mapped Length (bp)</td>
<td>50</td>
<td>The minimum required mapped HQ isoform sequence length (in base pairs) for the Iso-Seq mapping-collapse step. Note: This is applicable only if a reference genome is provided.</td>
</tr>
<tr>
<td>Minimum Gap-Compressed Identity (%)</td>
<td>95</td>
<td>The minimum required gap-compressed alignment identity, in percent. Gap-compressed identity counts consecutive insertion or deletion gaps as one difference. Note: This is applicable only if a reference genome is provided.</td>
</tr>
<tr>
<td>Minimum Mapped Coverage (%)</td>
<td>99</td>
<td>The minimum required HQ transcript isoform sequence alignment coverage (in percent) for the Iso-Seq mapping-collapse step. Note: This is applicable only if a reference genome is provided.</td>
</tr>
<tr>
<td>Maximum Fuzzy Junction Difference (bp)</td>
<td>5</td>
<td>The maximum junction difference between two mapped isoforms to be collapsed into a single isoform. If the junction differences are all less than the provided value, they will all be collapsed. Setting to 0 requires all junctions to be exact to be collapsed into a single isoform. Applicable only if a reference genome is provided.</td>
</tr>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>10</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for Iso-Seq Analysis is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Filters to Add to the Data Set</td>
<td>NONE</td>
<td>A semicolon-separated (not comma-separated) list of other filters to add to the Data Set.</td>
</tr>
<tr>
<td>Advanced pbmm2 Options</td>
<td>NONE</td>
<td>Space-separated list of custom pbmm2 options. (pbmm2 is already running with --preset ISOSEQ) Not all supported command-line options can be used, and HPC settings cannot be modified. See SMRT® Tools reference guide v11.0 for details.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The Iso-Seq application generates the following reports:

CCS Analysis Read Classification > Summary Metrics

• Reads: The total number of CCS reads.
• Reads with 5’ and 3’ Primers: The number of CCS reads with 5’ and 3’ cDNA primers detected.
• Non-Concatemer Reads with 5’ and 3’ Primers: The number of non-concatemer CCS reads with 5’ and 3’ primers detected.
• **Non-Concatemer Reads with 5’ and 3’ Primers and Poly-A Tail**: The number of non-concatemer CCS reads with 5’ and 3’ primers and polyA tails detected. This is usually the number for full-length, non-concatemer (FLNC) reads, unless polyA tails are not present in the sample.

• **Mean Length of Full-Length Non-Concatemer Reads**: The mean length of the non-concatemer CCS reads with 5’ and 3’ primers and polyA tails detected.

• **Unique Primers**: The number of unique primers in the sequence.

• **Mean Reads per Primer**: The mean number of CCS reads per primer.

• **Max. Reads per Primer**: The maximum number of CCS reads per primer.

• **Min. Reads per Primer**: The minimum number of CCS reads per primer.

• **Reads without Primers**: The number of CCS reads without a primer.

• **Percent Bases in Reads with Primers**: The percentage of bases in CCS reads in the sequence data that contain primers.

• **Percent Reads with Primers**: The percentage of CCS reads in the sequence data that contain primers.

CCS Analysis Read Classification > Primer Data

• **Bio Sample Name**: The name of the biological sample associated with the primer.

• **Primer Name**: A string containing the pair of primer indices associated with this biological sample.

• **CCS Reads**: The number of CCS reads associated with the primer.

• **Mean Primer Quality**: The mean primer quality associated with the primer.

• **Reads with 5’ and 3’ Primers**: The number of CCS reads with 5’ and 3’ cDNA primers detected.

• **Non-Concatemer Reads with 5’ and 3’ Primers**: The number of non-concatemer CCS reads with 5’ and 3’ primers detected.

• **Non-Concatemer Reads with 5’ and 3’ Primers and Poly-A Tail**: The number of non-concatemer CCS reads with 5’ and 3’ primers and polyA tails detected. This is usually the number for full-length, non-concatemer (FLNC) reads, unless polyA tails are not present in the sample.

CCS Analysis Read Classification > Primer Read Statistics

• **Number Of Reads Per Primer**: Maps the number of reads per primer, sorted by primer ranking.

• **Primer Frequency Distribution**: Maps the number of samples with primers by the number of reads with primers.

• **Mean Read Length Distribution**: Maps the read mean length against the number of samples with primers.

CCS Analysis Read Classification > Primer Quality Scores

• Histogram of primer scores.

CCS Analysis Read Classification > Length of Full-Length Non-Concatemer Reads

• Histogram of the read length distribution of non-concatemer CCS reads with 5’ and 3’ primers and polyA tails detected.

Transcript Clustering > Summary Metrics

• **Sample Name**: The sample name for which the following metrics apply.

• **Number of High-Quality Isoforms**: The number of consensus isoforms that have an estimated accuracy above the specified threshold.

• **Number of Low-Quality Isoforms**: The number of consensus isoforms that have an estimated accuracy below the specified threshold.
Transcript Clustering > Length of Consensus Isoforms

- Histogram of the consensus isoform lengths and the distribution of isoforms exceeding a read length cutoff.

Transcript Mapping > Summary Metrics

- **Sample Name**: Sample name for which the following metrics apply.
- **Number of mapped unique isoforms**: The number of unique isoforms, where each unique isoform is generated by collapsing redundant HQ isoforms (such as those have very minor differences from one to one another) to one isoform. Each unique isoform may be generated from one or multiple HQ isoforms.
- **Number of mapped unique loci**: The number of unique mapped genomic loci among all unique isoforms. Multiple unique isoforms may map to the same genomic location, indicating these unique isoforms are transcribed from the same gene family, but spliced differently.

Transcript Mapping > Length of Mapped Isoforms

- Histogram of mapped isoforms binned by read length and the distribution of mapped isoforms exceeding a read length cutoff.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **Primers Summary**: Text file listing how many ZMWs were filtered, how many ZMWs are the same or different, and how many reads were filtered.
- **Inferred Primers**: Inferred primers used in the analysis. The algorithm looks at the first 35,000 ZMWs, then selects primers with ≥ 10 counts and mean scores ≥ 45.
- **Full-Length Non-Concatemer Read Assignments**: Full-length reads that have primers and polyA tails removed, in BAM format.
- **Full-Length Non-Concatemer Report**: Includes strand, 5' primer length, 3' primer length, polyA tail length, insertion length, and primer IDs for each full-length read that has primers and polyA tail, in CSV format.
- **Low-Quality Isoforms**: Isoforms with low consensus accuracy, in FASTQ and FASTA format. We recommend that you work only with High-Quality isoforms, unless there are specific reasons to analyze Low-Quality isoforms. When the input Data Set is a ConsensusReadSet, a FASTA file only is generated.
- **High-Quality Isoforms**: Isoforms with high consensus accuracy, in FASTQ and FASTA format. This is the recommended output file to work with. When the input Data Set is a ConsensusReadSet, a FASTA file only is generated.
- **Cluster Report**: Report of each full-length read into isoform clusters.
- **Mapped Counts by Barcode**: For each isoform, report supportive FLNC reads for each barcode.
- **Mapped High Quality Isoforms**: Alignments mapping isoforms to the reference genome, in BAM and BAI (index) formats.
- **Collapsed Filtered Isoforms GFF**: Mapped, unique isoforms, in GFF format. This is the Mapping step output that is the recommended output file to work with.
• **Collapsed Filtered Isoforms**: Mapped, unique isoforms, in FASTQ format. This is the Mapping step output that is recommended output file to work with. When the input Data Set is a ConsensusReadSet, **only** a FASTA file is generated.

• **Collapsed Filtered Isoforms Groups**: Report of isoforms mapped into collapsed filtered isoforms.

• **Full-length Non-Concatemer Read Assignments**: Report of full-length read association with collapsed filtered isoforms, in text format.

• **Collapsed Filtered Isoform Counts**: Report of read count information for each collapsed filtered isoform.

Data > IGV Visualization Files

The following files are used for visualization using IGV; see “Visualizing data using IGV” on page 118 for details.

• **Mapped High Quality Isoforms**: Alignments mapping isoforms to the reference genome, in BAM and BAI (index) formats.

Note: For details on custom PacBio tags added to output BAM files by the Iso-Seq Application, see page 54 of SMRT Tools reference guide (v11.0), or see here for details.
Microbial Genome Analysis

Use this application to generate *de novo* assemblies of small prokaryotic genomes between 1.9-10 Mb and companion plasmids between 2 – 220 kb. This application can optionally include analysis of 6mA and 4mC modified bases and associated DNA sequence motifs. (This requires kinetic information.)

Note: This combines and replaces the Microbial Assembly and Base Modification Analysis applications in the previous release.

The Microbial Genome Analysis application:

- Accepts **HiFi reads** (BAM format) as input. **HiFi reads** are reads generated with CCS analysis whose quality value is equal to or greater than 20.
- Includes chromosomal- and plasmid-level *de novo* genome assembly, circularization, polishing, and rotation of the origin of replication for each circular contig.
- Performs base modification detection to identify 4mCm and 6mA and associated DNA sequence motifs. (This requires kinetic information.)
- Facilitates assembly of larger genomes (yeast) as well.

Importing/exporting analysis settings

- Click **Import Analysis Settings** and select a previously-saved CSV file containing the desired settings (including **Advanced Parameters**) for the selected application. The imported application settings are set.
- Click **Export** to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Run Base Modification Analysis (Default = ON)

- Run Base Modification analysis on the final assembly. This only applies if the assembly is not empty, and the input data contains the correct kinetic tags.

Find Modified Base Motifs (Default = ON)

- Perform motif detection on the results of base modification analysis.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Assembly Options for chromosomal stage</td>
<td>NONE</td>
<td>A semicolon-separated list of KEY=VALUE pairs. New line characters are not accepted. See Appendix C in SMRT Tools reference guide (v11.0) for details.</td>
</tr>
<tr>
<td>Advanced Assembly Options for plasmid stage</td>
<td>NONE</td>
<td>A semicolon-separated list of KEY=VALUE pairs. New line characters are not accepted. See Appendix C in SMRT Tools reference guide (v11.0) for details.</td>
</tr>
<tr>
<td>Maximum plasmid length, bp</td>
<td>300,000</td>
<td>Value that should be set higher than the maximum size of a plasmid in the input sample. The default value should work well in most cases.</td>
</tr>
</tbody>
</table>
Reports and data files

The Microbial Genome Analysis application generates the following reports:

Mapping Report > Summary Metrics

Mapping is local alignment of a read or subread to a reference sequence.

- **Mean Concordance (mapped)**: The mean concordance of subreads that mapped to the reference sequence. Concordance for alignment is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).
- **Number of Alignments**: The number of alignments that mapped to the reference sequence.
- **Number of CCS reads (total)**: The total number of CCS reads in the sequence.
- **Number of CCS reads (mapped)**: The number of CCS reads that mapped to the reference sequence.
- **Number of CCS reads (unmapped)**: The number of CCS reads not mapped to the reference sequence.
- **Percentage of CCS reads (mapped)**: The percentage of CCS reads that mapped to the reference sequence.
- **Percentage of CCS reads (unmapped)**: The percentage of CCS reads not mapped to the reference sequence.
- **Number of CCS Bases (mapped)**: The number of CCS bases that mapped to the reference sequence.
- **CCS Read Length Mean (mapped)**: The mean read length of CCS reads that mapped to the reference sequence, starting from the first mapped base of the first mapped CCS read, and ending at the last mapped base of the last mapped CCS read.
- **CCS Read N50 (mapped)**: The read length at which 50% of the mapped bases are in CCS reads longer than, or equal to, this value.
- **CCS Read Length 95% (mapped)**: The 95th percentile of read length of CCS reads that mapped to the reference sequence.
- **CCS Read Length Max (mapped)**: The maximum length of CCS reads that mapped to the reference sequence.
Mapping Report > CCS Mapping Statistics Summary
Displays mapping statistics per movie.

- **Sample**: The sample name for which the following metrics apply.
- **Movie**: The movie name for which the following metrics apply.
- **Number of CCS Reads (mapped)**: The number of CCS reads that mapped to the reference sequence. This includes adapters.
- **CCS Read Length Mean (mapped)**: The mean read length of CCS reads that mapped to the reference sequence, starting from the first mapped base of the first mapped CCS read, and ending at the last mapped base of the last mapped CCS read.
- **CCS Read Length N50 (mapped)**: The read length at which 50% of the mapped bases are in CCS reads longer than, or equal to, this value.
- **Number of CCS Bases (mapped)**: The number of CCS bases that mapped to the reference sequence.
- **Mean Concordance (mapped)**: The mean concordance of subreads that mapped to the reference sequence. Concordance for alignment is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).

Mapping Report > Mapped CCS Read Length
- Histogram distribution of the number of mapped CCS reads by read length.

Mapping Report > Mapped CCS Reads Concordance
- Histogram distribution of the number of CCS reads by the percent concordance with the reference sequence. Concordance for CCS reads is defined as the number of matching bases over the number of alignment columns (match columns + mismatch columns + insertion columns + deletion columns).

Mapping Report > Mapped Concordance vs Read Length
- Maps the percent concordance with the reference sequence against the CCS read length, in base pairs.

Polished Assembly > Summary Metrics
Displays statistics on the contigs from the *de novo* assembly that were corrected by Arrow.

- **Polished Contigs**: The number of polished contigs.
- **Maximum Contig Length**: The length of the longest contig.
- **N50 Contig Length**: 50% of the contigs are longer than this value.
- **Sum of Contig Lengths**: Total length of all the contigs.
- **E-size (sum of squares/sum)**: The expected contig size for a random base in the polished contigs.

Polished Assembly > Polished Contigs from Microbial Assembly HiFi
Displays a table of details about all assembled contigs.

- **Contig**: The contig name.
- **Length**: The length of the contig, in base pairs, after polishing.
• **Circular**: Marks whether circularity of the contig was detected. Output values are *yes* and *no*.
• **Coverage**: The average coverage across the contig, calculated by the sum of coverage of all bases in the contig divided by the number of bases.

Coverage > Summary Metrics
Displays depth of coverage across the *de novo*-assembled genome, as well as depth of coverage distribution.

• **Mean Coverage**: The mean depth of coverage across the assembled genome sequence.
• **Missing Bases**: The percentage of the genome’s sequence that have zero depth of coverage.

Coverage > Coverage across Reference
• Displays coverage at each position of the draft genome assembly.

Coverage > Depth of Coverage
• Histogram distribution of the draft assembly regions by the coverage.

Coverage > Coverage vs. [GC] Content
• Maps (as a percentage, over a 100 bp window) the number of Gs and Cs present across the coverage. The number of genomic windows with the corresponding % of Gs and Cs is displayed on top. Used to check that no coverage is lost over extremely biased base compositions.

Base Modifications > Kinetic Detections
• **Per-Base Kinetic Detections**: Maps the modification QV against per-strand coverage.
• **Kinetic Detections Histogram**: Histogram distribution of the number of bases by modification QV.

Modified Base Motifs > Modified Base Motifs
Displays statistics for the methyltransferase recognition motifs detected.

• **Motif**: The nucleotide sequence of the methyltransferase recognition motif, using the standard IUPAC nucleotide alphabet.
• **Modified Position**: The position within the motif that is modified. The first base is 0. **Example**: The modified adenine in GATC is at position 2.
• **Modification Type**: The type of chemical modification most commonly identified at that motif. These are: 6mA, 4mC, or modified_base (modification not recognized by the software.)
• **% of Motifs Detected**: The percentage of times that this motif was detected as modified across the entire genome.
• **# of Motifs Detected**: The number of times that this motif was detected as modified across the entire genome.
• **# of Motifs In Genome**: The number of times this motif occurs in the genome.
• **Mean QV**: The mean modification QV for all instances where this motif was detected as modified.
• **Mean Coverage**: The mean coverage for all instances where this motif was detected as modified.
• **Partner Motif**: For motifs that are not self-palindromic, this is the complementary sequence.

• **Mean IPD Ratio**: The mean inter-pulse duration. An IPD ratio greater than 1 means that the sequencing polymerase slowed down at this base position, relative to the control. An IPD ratio less than 1 indicates speeding up.

• **Group Tag**: The motif group of which the motif is a member. Motifs are grouped if they are mutually or self reverse-complementary. If the motif isn’t complementary to itself or another motif, the motif is given its own group.

• **Objective Score**: For a given motif, the objective score is defined as
 \[(\text{fraction methylated}) \times (\text{sum of log-p values of matches})\].

Modified Base Motifs > Modification QVs

• Maps motif sites against Modification QV for all genomic occurrences of a motif, for each reported motif, including “No Motif”.

Modified Base Motifs > ModQV Versus Coverage by Motif

• Maps coverage against Modification QV for all genomic occurrences of a motif, for each reported motif.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

• **Analysis Log**: Log information for the analysis execution.

• **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)

• **Per-Base Kinetics**: CSV file containing per-base information.

• **Per-Base IPDs for IGV**: BigWig file containing encoded per-base IPD ratios.

• **Motif Annotations**: GFF file listing every modified nucleotide sequence motif in the genome.

• **Modified Base Motifs**: CSV file containing statistics for the methyltransferase recognition motifs detected.

• **Mapped BAM**: The BAM file of subread alignments to the draft contigs used for polishing.

• **Mapped BAM Index**: The BAI index file for the corresponding Mapped BAM file.

• **Modified Bases**: GFF file listing every detected modified base in the genome.

• **Final Polished Assembly**: The polished assembly before oriC rotation is applied, in FASTA format.

• **Final Polished Assembly Index**: The BAI index file for the polished assembly before oriC rotation is applied.

• **Final Polished Assembly for NCBI**: The final polished assembly with applied oriC rotation and header adjustment for NCBI submission, in FASTA format.

• **Coverage Summary**: Coverage summary for regions (bins) spanning the reference sequence.

Data > IGV Visualization Files

The following files are used for visualization using IGV; see “Visualizing data using IGV” on page 118 for details.

• **Mapped BAM**: The BAM file of subread alignments to the draft contigs used for polishing.
• **Mapped BAM Index**: The BAI index file for the corresponding Mapped BAM file.

• **Final Polished Assembly**: The polished assembly before oriC rotation is applied, in FASTA format.

• **Final Polished Assembly Index**: The BAI index file for the polished assembly before oriC rotation is applied.

• **Per-Base IPDs for IGV**: BigWig file containing encoded per-base IPD ratios.
Minor Variants Analysis

Use this application to identify and phase minor single nucleotide substitution variants in complex populations. This application is powered by the juliet algorithm:

- Accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.
- Includes reference-based codon amino acid-calling (indel variants not called) in amplicons ≤4kb, fully spanned by long reads.
- Includes extensive application reports for the HIV pol coding region, including drug resistance annotation from publicly-available databases.
- Includes reliable 1% minor variant detection with 6000 high-quality CCS reads with predicted accuracy of ≥0.99 per sample.
- The current version of this application provides additional reports for the HIV pol coding region, but it can be configured for any target organism or gene.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected application. The imported application settings are set.
- Click Export to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Reference Set (Required)

- Specify a reference sequence to align the SMRT Cells reads to and to produce alignments.

Target Config (Required)

- Defines genes of interest within the reference and, optionally, drug resistance mutations for specific variants. Minor Variants Analysis contains one predefined target configuration for HIV HXB2. To specify this target configuration, enter HIV_HXB2 into the Target Config field. To specify a custom target configuration for any organism or gene other than HIV HXB2: Enter either the path to the target configuration JSON file on the SMRT Link server, or the entire content of the JSON file.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Variant Frequency to Report (%) (Required)</td>
<td>100</td>
<td>Specify that only variants whose percentage of the population is less than this value be reported. Lowering this value helps to phase low-frequency variants when the highest frequency variant is different from the reference.</td>
</tr>
<tr>
<td>Minimum Variant Frequency to Report (%) (Required)</td>
<td>0.1</td>
<td>Specify that only variants whose percentage of the population is greater than this value be reported. Increasing this value helps to reduce PCR noise.</td>
</tr>
</tbody>
</table>
Reports and data files

The Minor Variants Analysis application generates the following reports:

Minor Variants > Summary

- **Barcode Name**: The pair of barcode indices for which the following metrics apply. If this was a single-sample analysis, this section of the report displays NA.
- **Median Coverage**: The median read coverage across all observed variant positions.
- **Number of Variants**: The number of variants found in the sample.
- **Number of Genes**: The number of genes observed in the sample.
- **Number of Affected Drugs**: The number of drugs to which resistance is conferred by variants in the sample.
- **Number of Haplotypes**: The number of haplotypes with different co-occurring variants found in the sample.
- **Maximum Frequency Haplotypes (%)**: The maximum haplotype frequency reconstructed from the sample.

Minor Variants > Details

- **Barcode Name**: The pair of barcode indices for which the following metrics apply. If this was a single-sample analysis, this section of the report displays NA.
- **Position**: The amino acid position of the minor variant, with respect to the current gene.
- **Reference Codon**: The reference codon of the minor variant.
- **Variant Codon**: The mutated codon for the minor variant.
- **Variant Frequency (%)**: The frequency of the minor variant, in percent.
- **Coverage**: The read coverage at the position of the codon.
- **ORF**: The name of the open reading frame/gene.
- **Affected Drugs**: Drugs to which resistance is conferred by the minor variant, according to a database specified in the configuration file.
- **Haplotypes**: The haplotypes associated with this variant.
- **Haplotype Frequencies (%)**: The cumulative haplotype frequencies associated with the variant.
Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **Variants Summary**: Data from the Minor Variants Details report, in CSV format.
- **Mapped Reads**: All input reads that were mapped to the reference by the application.
- **Detailed Reports**: Minor variants report information generated, as a ZIP-compressed HTML file. This includes the full report, in human-readable format, and contains four sections:

1. **Input Data**

Summarizes the data provided, the exact call for juliet, and juliet version for traceability purposes.

2. **Target Config**

Summarizes details of the provided target configuration for traceability. This includes the configuration version, reference name and length, and annotated genes. Each gene name (in bold) is followed by the reference start, end positions, and possibly known drug resistance mutations.

▼ Target config

<table>
<thead>
<tr>
<th>Config Version</th>
<th>Predefined v1.1, PacBio internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Name</td>
<td>HIV KX82</td>
</tr>
<tr>
<td>Reference Length</td>
<td>9719</td>
</tr>
<tr>
<td>Genes:</td>
<td></td>
</tr>
<tr>
<td>5'LTR (1-634)</td>
<td></td>
</tr>
<tr>
<td>p17 (780-1186)</td>
<td></td>
</tr>
<tr>
<td>p24 (1186-1879)</td>
<td></td>
</tr>
<tr>
<td>p2 (1879-1921)</td>
<td></td>
</tr>
<tr>
<td>p7 (1921-2086)</td>
<td></td>
</tr>
<tr>
<td>p1 (2086-2134)</td>
<td></td>
</tr>
<tr>
<td>p6 (2134-2292)</td>
<td></td>
</tr>
<tr>
<td>Protease (2253-2550)</td>
<td></td>
</tr>
<tr>
<td>AZV/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M V82A V82T V82P V82S I84V N88S L90M</td>
</tr>
<tr>
<td>D4TR/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M L76V V82A V82T V82P V82S I84V L90M</td>
</tr>
<tr>
<td>FPV/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M L76V V82A V82T V82P V82S I84V N88S L90M</td>
</tr>
<tr>
<td>IDV/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M L76V V82A V82T V82P V82S I84V N88S L90M</td>
</tr>
<tr>
<td>INH/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M L76V V82A V82T V82P V82S I84V N88S L90M</td>
</tr>
<tr>
<td>SQV/r/s:</td>
<td>G48V G48M I54V I54A I54L I54M V82A V82T V82P I84V N88S L90M</td>
</tr>
<tr>
<td>TPV/r/s:</td>
<td>V321 L33 F461 N46L I47V G48V G48M I54L I54V I54T I54A I54L I54M V82A V82T V82P I84V N88S L90M</td>
</tr>
</tbody>
</table>

3. **Variant Discovery**

For each gene/open reading frame, there is one overview table.

Each row represents a variant position. Each variant position consists of the reference codon, reference amino acid, relative amino acid position in
the gene, mutated codon, percentage, mutated amino acid, coverage, and possible affected drugs.

Clicking the row displays counts of the multiple-sequence alignment counts of the -3 to +3 context positions.

4. Drug Summaries

Summarizes the variants grouped by annotated drug mutations:
Phasing

The default mode is to call amino-acid/codon variants independently. Setting the **Phase Variants** parameter to **On**, variant calls from distinct haplotypes are clustered and visualized in the HTML output.

- The row-wise variant calls are "transposed" onto per-column haplotypes. Each haplotype has an ID: $[A-Z]\{1\}[a-z]?$.
- For each variant, colored boxes in this row mark haplotypes that contain this variant.
- Colored boxes per haplotype/column indicate variants that co-occur. Wild type (no variant) is represented by plain dark gray. A color palette helps to distinguish between columns.
- The JSON variant positions has an additional `haplotype_hit` boolean array with the length equal to the number of haplotypes. Each entry indicates if that variant is present in the haplotype. A haplotype block under the root of the JSON file contains counts and read names. The order of those haplotypes matches the order of all `haplotype_hit` arrays.

There are two types of tooltips in the haplotype section of the table.

The first tooltip is for the **Haplotypes %** and shows the number of reads that count towards (a) actually reported haplotypes, (b) haplotypes that have less than 10 reads and are not being reported, and (c) haplotypes that are not suitable for phasing. Those first three categories are mutually exclusive and their sum is the total number of reads going into **juliet**. For (c), the three different marginals provide insights into the sample...
quality; as they are marginals, they are not exclusive and can overlap. The following image shows a sample with bad PCR conditions:

<table>
<thead>
<tr>
<th>Haplotype Category</th>
<th>#Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported</td>
<td>1735</td>
</tr>
<tr>
<td>Insufficient Coverage (unreported)</td>
<td>66</td>
</tr>
<tr>
<td>Overall Damaged (unreported)</td>
<td>3894</td>
</tr>
<tr>
<td>- Marginal Gaps</td>
<td>786</td>
</tr>
<tr>
<td>- Marginal Heteroduplexes</td>
<td>3709</td>
</tr>
<tr>
<td>- Marginal Partial</td>
<td>76</td>
</tr>
</tbody>
</table>

The second type of tooltip is for each haplotype percentage and shows the number of reads contributing to this haplotype:
Use this application to identify structural variants (Default: ≥20 bp) in a sample or set of samples relative to a reference. Variant types identified are insertions, deletions, duplications, copy number variants (CNVs), inversions, and translocations.

- The application accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected application. The imported application settings are set.
- Click Export to create a CSV file containing all the settings you specified for the application. You can then import this file when creating future analyses using the same application. You can also use this exported file as a template for use with later analyses.

Reference Set (Required)

- Specify a reference genome against which to align the reads and call variants.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Length of Structural Variant (bp) (Required)</td>
<td>20</td>
<td>The minimum length of structural variants, in base pairs.</td>
</tr>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Minimum % of Reads that Support Variant (any one sample) (Required)</td>
<td>10</td>
<td>Ignore calls supported by <P% of reads in every sample.</td>
</tr>
<tr>
<td>Minimum Reads that Support Variant (any one sample) (Required)</td>
<td>3</td>
<td>Ignore calls supported by <N reads in every sample.</td>
</tr>
<tr>
<td>Minimum Reads that Support Variant (total over all samples) (Required)</td>
<td>3</td>
<td>Ignore calls supported by <N reads total across samples.</td>
</tr>
<tr>
<td>Filters to Add to the Data Set</td>
<td>NONE</td>
<td>A semicolon-separated (not comma-separated) list of other filters to add to the Data Set.</td>
</tr>
<tr>
<td>Minimum Mapped Length (bp)</td>
<td>50</td>
<td>The minimum required mapped read length, in base pairs.</td>
</tr>
<tr>
<td>Minimum Gap-Compressed Identity (%)</td>
<td>70</td>
<td>The minimum required gap-compressed alignment identity, in percent. Gap-compressed identity counts consecutive insertion or deletion gaps as one difference.</td>
</tr>
<tr>
<td>Bio Sample Name of Aligned Dataset</td>
<td>NONE</td>
<td>Populates the Bio Sample Name (Read Group SM tag) in the aligned BAM file. If blank, uses the Bio Sample Name of the input file. Note: Avoid using spaces in Bio Sample Names as this may lead to third-party compatibility issues.</td>
</tr>
</tbody>
</table>
To launch a multi-sample analysis

1. Click + Create New Job.
2. Enter a name for the analysis.
3. Select all the Data Sets for all the input samples.
4. In the Analysis of Multiple Data Sets list, select One Analysis for All Data Sets.
5. Click Next.
6. Select Structural Variant Calling from the Analysis Application list.

Note: The Data Set field Bio Sample Name identifies which Data Sets belong to which biological samples.

- If multiple Data Sets with the same Bio Sample Name are selected and submitted, the Structural Variant Calling application merges those Data Sets as belonging to the same sample.
- If any input Data Sets do not have a Bio Sample Name specified, they are merged (if there are multiple such Data Sets) and their Bio Sample Name is set to UnnamedSample in the analysis results.

Reports and data files

The Structural Variant Calling application generates the following reports:

Report > Count by Sample (SV Type)

This table describes the type of called variants broken down by individual sample. For each sample, only variants for which the sample has a heterozygous (“0/1”) or homozygous alternative (“1/1”) genotype are considered.

- **Insertions (total bp):** The count and total length (in base pairs) of all called insertions in the sample.
- **Deletions (total bp):** The count and total length (in base pairs) of all called deletions in the sample.
- **Inversions (total bp):** The count and total length (in base pairs) of all called inversions in the sample.
- **Translocations:** The count of all called translocations in the sample.
- **Duplications (total bp):** The count and total length (in base pairs) of all called duplications in the sample.
- **Total Variants (total bp):** The count and total length (in base pairs) of all variants in the sample.
Report > Count by Sample (Genotype)
This table describes the genotype of called variants broken down by individual sample. For each sample, only variants for which the sample has a heterozygous ("0/1") or homozygous alternative ("1/1") genotype are considered.

- **Homozygous Variants**: The count of homozygous variants called in the sample.
- **Heterozygous Variants**: The count of heterozygous variants called in the sample.
- **Total Variants**: The count of all called variants in the sample.

Report > Count by Annotation
This table describes the called variants broken down by a set of repeat annotations. Each variant is counted once (regardless of sample genotypes) and assigned to exactly one annotation category. Only insertion and deletion variants are considered in this report.

- **Tandem repeat**: Variant sequence is a short pattern repeated directly next to itself.
- **ALU**: Variant sequence matches the ALU SINE repeat consensus.
- **L1**: Variant sequence matches the L1 LINE repeat consensus.
- **SVA**: Variant sequence matches the SVA LINE repeat consensus.
- **Unannotated**: Variant sequence does not match any of the above patterns.
- **Total**: The sum of variants from all annotations.

Report > Length Histogram
- Histogram of the distribution of variant lengths, in base pairs, broken down by individual. For each individual, separate distributions are provided for variants between 10-99 base pairs, 100-999 base pairs, and ≥ 1 kilobase pairs. Each variant is counted once, regardless of sample genotypes.

Data > File Downloads
The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **Aligned Reads (per sample)**: Aligned reads, in BAM format, separated by individual.
- **Index of Aligned Reads (per sample)**: BAM index files associated with the Aligned Reads BAM files.
- **Structural Variants**: All the structural variants, in VCF format.

Data > IGV Visualization Files
The following files are used for visualization using IGV; see "Visualizing data using IGV" on page 118 for details.
• **Aligned Reads (per sample):** Aligned reads, in BAM format, separated by individual.

• **Index of Aligned Reads (per sample):** BAM index files associated with the Aligned Reads BAM files.

• **Structural Variants:** All the structural variants, in VCF format. (See here for details.)
PacBio® data utilities

Following are data processing utilities provided with SMRT Analysis v11.0. These utilities are used as intermediate steps to producing biologically-meaningful results. Each utility is described later in this document, including all parameters, reports and output files generated by the utility.

Note: The following data utilities accept only HiFi reads as input.

5mC CpG Detection
- Analyze the kinetic signatures of cytosine bases in CpG motifs to identify the presence of 5mC.
- See “5mC CpG Detection” on page 91 for details.

Demultiplex Barcodes
- Separate reads by barcode.
- See “Demultiplex Barcodes” on page 92 for details.

Export Reads
- Export HiFi reads that pass filtering criteria as FASTA, FASTQ and BAM files.
- **For barcoded runs, you must first** run the Demultiplex Barcodes application to create BAM files before using this application.
- See “Export Reads” on page 98 for details.

Mark PCR Duplicates
- Remove duplicate reads from a HiFi reads Data Set created using an ultra-low DNA sequencing protocol.
- See “Mark PCR Duplicates” on page 100 for details.

Trim Ultra-Low Adapters (was Trim gDNA Amplification Adapters)
- Trim PCR Adapters from a HiFi reads Data Set created using an ultra-low DNA sequencing library.
- See “Trim Ultra-Low Adapters” on page 102 for details.

Note: The following data utility accept only Subreads as input.

Circular Consensus Sequencing (CCS)
- Identify consensus sequences for single molecules.
- See “Circular Consensus Sequencing (CCS)” on page 104 for details.
5mC CpG Detection

Use this utility to analyze the kinetic signatures of cytosine bases in CpG motifs to identify the presence of 5mC.

- The utility accepts **HiFi reads** (BAM format) as input. **HiFi reads** are reads generated with CCS analysis whose quality value is equal to or greater than 20. The utility also requires kinetics information.

Importing/exporting analysis settings

- Click **Import Analysis Settings** and select a previously-saved CSV file containing the desired settings (including **Advanced Parameters**) for the selected utility. The imported utility settings are set.

- Click **Export** to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep Kinetics in Output</td>
<td>OFF</td>
<td>If ON, specifies that the IPD and PulseWidth records are included in the output BAM file.</td>
</tr>
<tr>
<td>Filters to Add to the Data Set</td>
<td>NONE</td>
<td>A semicolon-separated (not comma-separated) list of other filters to add to the Data Set.</td>
</tr>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The 5mC CpG Detection utility generates the following reports:

5mC CpG Report > Methylation Probability

- **CpG Methylation in Reads**: The cumulative of percentage of CpG sites in the sample mapped against the predicted probability of methylation.

- **CpG Methylation in Reads (Histogram)**: Histogram displaying the percentage of CpG sites in the sample versus the predicted probability of methylation.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.

- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose **Data > SMRT Link Log**.)

- **HiFi reads with 5mC Calls**: BAM file containing all the HiFi reads in the sample that include 5mC calls.

- **<Input Data Set>(5mC)**: Output Data Set with the 5mC calls.
Demultiplex Barcodes

Use this utility to separate sequence reads by barcode. (See “Working with barcoded data” on page 107 for more details.)

- The utility accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.
- Barcoded SMRTbell templates are SMRTbell templates with adapters flanked by barcode sequences, located on both ends of an insert.
- For symmetric and tailed library designs, the same barcode is attached to both sides of the insert sequence of interest. The only difference is the orientation of the trailing barcode. For asymmetric designs, different barcodes are attached to the sides of the insert sequence of interest.
- Barcode names and sequences, independent of orientation, must be unique.
- Most-likely barcode sequences per SMRTbell template are identified using a FASTA-format file of the known barcode sequences.

Given an input set of barcodes and a BAM Data Set, the Demultiplex Barcodes utility produces:

- A set of BAM files whose reads are annotated with the barcodes;
- A ConsensusReadSet file that contains the file paths of that collection of barcode-tagged BAM files and their related files.

Notes on Iso-Seq Multiplexed Data

There are two ways in which an Iso-Seq library can be multiplexed:

1. Barcoded adapter Iso-Seq libraries
 - If using the SMRTbell Barcoded Adapter with the Iso-Seq Express protocol on or after April 21, 2022, demultiplex the Data Set prior to running the Iso-Seq application.
 - To analyze the samples in a single Iso-Seq run, select all the demultiplexed Data Sets to combine and begin the Iso-Seq analysis.

2. Barcoded cDNA primer Iso-Seq libraries
 - If following multiplexing guidelines using the Iso-Seq Express protocol prior to April 21, 2022 and you ordered synthesized oligos listed in the Appendix 2 - Recommended barcoded NEBNext single cell cDNA PCR primer and Iso-Seq Express cDNA PCR primer sequences section, demultiplex your Data Set using the Iso-Seq application. In other words, do not run the Demultiplexing Barcodes utility first.
 - See “Iso-Seq® Analysis” on page 67 for choices on Primer Sets to use.
Importing/exporting analysis settings

- Click **Import Analysis Settings** and select a previously-saved CSV file containing the desired settings (including **Advanced Parameters**) for the selected utility. The imported utility settings are set.
- Click **Export** to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

Barcode Set (Required)

- Specify a barcode sequence file to separate the reads.

Same Barcodes on Both Ends of Sequence (Default = Yes)

- Specify **Yes** to retain all the reads with the **same** barcodes on both ends of the insert sequence, such as symmetric and tailed designs. (See "Working with barcoded data" on page 107 for information on barcode designs.)
- Specify **No** to specify asymmetric designs where the barcodes are **different** on each end of the insert sequence.

Assign Bio Sample Names to Barcodes (Required)

SMRT Link automatically creates a CSV-format **Autofilled Barcoded Sample** File. The barcode name is populated based on your choice of barcode set, and if the barcodes are the same at both ends of the sequence. The file includes a column of automatically-generated Bio Sample Names \(1\) through \(N\), corresponding to barcodes \(1\) through \(N\), for the biological sample names. There are two different ways to specify which barcodes to use, and assign biological sample names to barcodes:

Interactively:

1. Click **Interactively**, then drag barcodes from the **Available Barcodes** column to the **Included Barcodes** column. (Use the checkboxes to select multiple barcodes.)
2. (Optional) Click a Bio Sample field to edit the Bio Sample Name associated with a barcode. **Note:** Avoid spaces in Bio Sample Names as they may lead to third-party compatibility issues.
3. (Optional) Click **Download as a file for later use**.
4. Click **Save** to save the edited barcodes/Bio Sample names. You see **Success** on the line below, assuming the file is formatted correctly.

<table>
<thead>
<tr>
<th>Multiplexed method</th>
<th>Run Demultiplex Barcodes utility?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not multiplexed</td>
<td>NO</td>
</tr>
<tr>
<td>Barcoded adapters</td>
<td>YES</td>
</tr>
<tr>
<td>Barcoded cDNA primer</td>
<td>NO</td>
</tr>
</tbody>
</table>
From a file:

1. Click **From a File**, then click **Download File**. Edit the file and enter the biological sample names associated with the barcodes in the second column, then save the file. Use alphanumeric characters, spaces (allowed but **not recommended** for compatibility with third-party downstream software), hyphens, underscores, colons, or periods **only** - other characters will be removed **automatically**, with a maximum of 40 characters. If you did **not** use all barcodes in the Autofilled Barcode Name file in the sequencing run, delete those rows.
 - **Note**: Open the CSV file in a text editor and check that the columns are separated by **commas**, not semicolons or tabs.

2. Select the **Barcoded Sample File** you just edited. You see **Success** on the line below, assuming the file is formatted correctly.

Demultiplexed Output Data Set Name (Required)

- Specify the name for the new demultiplexed Data Set that will display in SMRT Link. The utility creates a copy of the input Data Set, renames it to the name specified, and creates demultiplexed child Data Sets linked to it. The input data set remains separate and unmodified.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Minimum Barcode Score</td>
<td>80</td>
<td>A barcode score measures the alignment between a barcode attached to a read and an ideal barcode sequence, and is an indicator of how well the chosen barcode pair matches. It ranges between 0 (no match) and 100 (a perfect match). Specifies that reads with barcode scores below this minimum value are not included in the analysis. This affects the output BAM file and the output demultiplexed Data Set XML file.</td>
</tr>
<tr>
<td>Advanced lima Options</td>
<td>NONE</td>
<td>Space-separated list of custom lima options. Not all supported command-line options can be used, and HPC settings cannot be modified. See the Demultiplex Barcodes section of the document SMRT® Tools reference guide v11.0 for information on lima.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The Demultiplex Barcodes utility generates the following reports:

Barcodes > Summary Metrics

- **Unique Barcodes**: The number of unique barcodes in the sequence data.
- **Barcoded Reads**: The number of correctly-barcoded reads in the sequence data.
- **Mean Reads**: The mean number of reads per barcode combination.
- **Max. Reads**: The maximum number of reads per barcode combination.
- **Min. Reads**: The minimum number of reads per barcode combination.
- **Mean Read Length**: The mean read length of reads per barcode combination.
• **Unbarcoded Reads**: The number of reads without barcodes in the sequence data.
• **Percent Bases in Barcoded Reads**: The percentage of bases in sequence data reads that contain barcodes.
• **Percent Barcoded Reads**: The percentage of reads in the sequence data that contain barcodes.

Barcodes > Barcode Data

• **Bio Sample Name**: The name of the biological sample associated with the barcode combination.
• **Barcode Name**: A string containing the pair of barcode indices for which the following metrics apply.
• **Polymerase Reads**: The number of polymerase reads associated with the barcode combination.
• **Bases**: The number of bases associated with the barcode combination.
• **Mean Read Length**: The mean read length of reads associated with the barcode combination.
• **Mean Barcode Quality**: The mean barcode quality associated with the barcode combination.

Barcodes > Inferred Barcodes

• **Barcode Name**: The barcode name.
• **Number of ZMWs**: The number of ZMWs out of the first 50,000 that are inferred to be assigned to the barcode combination.
• **Mean Barcode Score**: The mean barcode score associated with the reads inferred to be associated with the barcode combination.
• **Selected**: Yes if the number of ZMWs is at least 10, No otherwise.

Barcodes > Barcoded Read Statistics

• **Number of Reads per Barcode**: Line graph displays the number of sorted reads per barcode.
 - **Good performance**: The Number of Reads per Barcode line (blue) should be mostly linear. Note that this depends on the choice of Y-axis scale. The mean Number of Reads per Barcode line (red) should be near the middle of the graph and should not be skewed by samples with too many or too few barcodes.
 - **Questionable performance**: A sharp discontinuity in the blue line, followed by no yield, with the red line way far from the center. Check the output file **Inferred Barcodes**, note the correct barcodes used, and consider reanalyzing the multiplexed samples with the correct Bio Sample names for the barcodes actually used. If you reanalyze the data, ensure that the **Barcode Name** file includes only the correct barcodes used.
• **Barcode Frequency Distribution**: Histogram distribution of read counts per barcode.
 - **Good performance**: A uniform distribution, which is most often a fairly tight symmetric normal distribution, with few barcodes in the tails.
 - **Questionable performance**: A large peak at zero. This can indicate use of incorrect barcodes. Check the output file **Inferred Barcodes**, note the correct barcodes used, and consider reanalyzing the multiplexed samples with the correct Bio Sample names for the barcodes actually used. If you reanalyze the data, ensure that the **Barcode Name** file includes only the correct barcodes used.
• **Mean Read Length Distribution**: Histogram distribution of the mean polymerase read length for all samples.
 - **Good performance**: The distribution should be normal with a relatively tight range.
- **Questionable performance**: A spread out distribution, with a mode towards the low end.

Barcodes > Barcode Quality Scores

- **Barcode Quality Score Distribution**: Histogram distribution of barcode quality scores. The scores range from 0-100, with 100 being a perfect match. Any significant modes or accumulation of scores <60 suggests issues with some of the barcode analyses. The red line is set at 80 – the minimum default barcode score.
- **Good performance**: HiFi demultiplexing runs should have >90% of reads with barcode quality score ≥95.

- **Questionable performance**: A bimodal distribution with a large second peak usually indicates that some barcodes that were sequenced were not included in the barcode scoring set.

Barcodes > Barcoded Read Binned Histograms

- **Read Length Distribution By Barcode**: Histogram distribution of the polymerase read length by barcode. Each column of rectangles is similar to a read length histogram rotated vertically, seen from the top. Each sample should have similar polymerase read length distribution. Non-smooth changes in the pattern looking from left to right might indicate suboptimal performance.
- **Barcode Quality Distribution By Barcode**: Histogram distribution of the per-barcode version of the Read Length Distribution by Barcode histogram. The histogram should contain a single cluster of hot spots in each column. All barcodes should also have similar profiles; significant differences in the pattern moving from left to right might indicate suboptimal performance.
 - **Good performance**: All columns show a single cluster of hot spots.
 - **Questionable performance**: A bimodal distribution would indicate missing barcodes in the scoring set.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **All Barcodes (FASTA)**: All barcoded reads, in FASTA format.
• **Barcode Files**: Barcoded subread Data Sets; one file per barcode.
• **Barcoding Summary CSV**: Data displayed in the reports, in CSV format. This includes Bio Sample Name.
• **Barcode Summary**: Text file listing how many ZMWs were filtered, how many ZMWs are the same or different, and how many reads were filtered.
• **Inferred Barcodes**: Inferred barcodes used in the analysis. The barcoding algorithm looks at the first 35,000 ZMWs, then selects barcodes with ≥10 counts and mean scores ≥45.
• **Unbarcoded Reads**: BAM file containing reads not associated with a barcode.
• **demultiplex.<barcode>.hifi.reads.fastq.gz**: Gzipped HiFi reads in FASTQ format, one file per barcode.
Export Reads

Use this utility to export HiFi reads that pass filtering criteria as FASTA, FASTQ and BAM files.

- The utility accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.
- For barcoded runs, you must first run the Demultiplex Barcodes utility to create BAM files before using this utility.
- This utility does not generate any reports.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected utility. The imported utility settings are set.
- Click Export to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

Output FASTA File (Default = ON)

- Outputs a single FASTA/FASTQ file containing all the reads that passed the filtering criteria.

Output BAM File (Default = OFF)

- Outputs a single BAM file containing all the reads that passed the filtering criteria.

Min. CCS Predicted Accuracy (Phred Scale) Default = 20

- Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters to Add to the Data Set</td>
<td>NONE</td>
<td>A semicolon-separated (not comma-separated) list of other filters to add to the Data Set.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- Analysis Log: Log information for the analysis execution.
- SMRT Link Log: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- hifi_reads.fasta.gz: Sequence data that passed filtering criteria, converted to Gzipped FASTA format.
- `hifi_reads.fastq.gz`: Sequence data that passed filtering criteria, converted to Gzipped FASTQ format.
- `<Reads>.bam`: Sequence data that passed filtering criteria.
Mark PCR Duplicates

Use this utility to remove duplicate reads from a HiFi reads Data Set created using an ultra-low DNA sequencing protocol.

- The utility accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.

Note: If starting with a very low-input DNA sample using the SMRTbell gDNA sample amplification kit, you must run this utility (preceded by the Trim Ultra-Low Adapters utility) on the resulting Data Set prior to running any secondary analysis application.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected utility. The imported utility settings are set.
- Click Export to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify Duplicates Across Sequencing Libraries</td>
<td>ON</td>
<td>Duplicate reads are identified per sequencing library. The library is specified in the BAM read group LB tag, which is set using the Well Sample Name field in Run Design. By convention, different LB tags correspond to different library preparations. Use this option when the LB tag does not follow this convention to treat all reads as from the same sequencing library.</td>
</tr>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The Mark PCR Duplicates utility generates the following reports:

PCR Duplicates > Duplicate Rate (table)

- **Library**: The name of the library containing duplicate molecules.
- **Unique Molecules**: The number of unique molecules in the library.
- **Unique Molecules (%)**: The percentage of unique molecules in the library.
- **Duplicate Reads**: The number of duplicate reads in the library.
- **Duplicate Reads (%)**: The percentage of duplicate reads in the library.

PCR Duplicates > Duplicate Rate (chart)

- **Duplicate Rate**: Displays the percentage of duplicate reads per library.
- **Duplicate Reads per Molecule**: Displays the percentage of duplicated molecules per library; broken down by the number of reads per duplicated molecule.
Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

- **Analysis Log**: Log information for the analysis execution.
- **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
- **PCR Duplicates**: BAM file containing duplicate reads with PCR adapters.
- **<Data Set> (deduplicated)**: Output Data Set, with duplicate reads with PCR adapters removed.
Trim Ultra-Low Adapters

Use this utility to trim PCR Adapters from a HiFi reads Data Set created using an ultra-low DNA sequencing library.

- The utility accepts HiFi reads (BAM format) as input. HiFi reads are reads generated with CCS analysis whose quality value is equal to or greater than 20.

Note: If starting with a very low-input DNA sample using the SMRTbell gDNA sample amplification kit, you **must** run this utility (followed by the Mark PCR Duplicates utility) on the resulting Data Set **prior** to running any secondary analysis application.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected utility. The imported utility settings are set.
- Click Export to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

PCR Adapters (Required)

- Specify the file of PCR adapters used during library preparation of an ultra-low DNA sequencing library to be trimmed from the sequenced data.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. CCS Predicted Accuracy (Phred Scale)</td>
<td>20</td>
<td>Phred-scale integer QV cutoff for filtering HiFi reads. The default for all applications is 20 (QV 20), or 99% predicted accuracy.</td>
</tr>
<tr>
<td>Compute Settings</td>
<td>Select</td>
<td>(Optional) Specify the distributed computing cluster settings configuration, if made available by the site SMRT Link administrator.</td>
</tr>
</tbody>
</table>

Reports and data files

The Trim Ultra-Low Adapters utility generates the following reports:

PCR Adapters > Summary Metrics

- **Unique PCR Adapters:** The number of unique PCR adapters in the sequence data.
- **Reads with PCR Adapters:** The number of reads in the sequence data that contain PCR adapters.
- **Mean Reads Per Adapter:** The mean number of reads per PCR adapter in the sequence data.
- **Max. Reads Per Adapter:** The maximum number of reads per PCR adapter in the sequence data.
- **Min. Reads Per Adapter:** The minimum number of reads per PCR adapter in the sequence data.
- **Mean Read Length:** The mean read length of reads per PCR adapter in the sequence data.
• **Reads Without PCR Adapters**: The number of reads without PCR adapters in the sequence data.

• **Percent Bases in Reads with Adapters**: The percentage of bases in reads in the sequence data that contain PCR adapters.

• **Percent Reads with Adapters**: The percentage of reads in the sequence data that contain PCR adapters.

PCR Adapters > PCR Adapter Data

• **Bio Sample Name**: The name of the biological sample associated with the PCR adapters.

• **PCR Adapter Name**: A string containing the pair of PCR adapter indices for which the following metrics apply.

• **Polymerase Reads**: The number of polymerase reads associated with the PCR adapter.

• **Bases**: The number of bases associated with the PCR adapter.

• **Mean Read Length**: The mean read length of reads associated with the PCR adapter.

• **Mean PCR Adapter Quality**: The mean PCR adapter quality associated with the PCR adapter.

PCR Adapters > PCR Adapter Read Statistics

• **Number of Reads Per PCR Adapter**: Histogram distribution of the mean number of reads per PCR adapter.

• **PCR Adapter Frequency Distribution**: Histogram distribution of reads with PCR adapter mapped to the number of barcoded samples.

• **Mean Read Length Distribution**: Maps the mean read length against the number of barcoded samples.

PCR Adapters > PCR Adapter Quality Scores

• Histogram distribution of PCR adapter quality scores. The scores range from 0-100, with 100 being a perfect match.

PCR Adapters > PCR Adapter Read Binned Histograms

• **Read Length Distribution By PCR Adapter**: Histogram distribution of the read length by PCR adapter. Each column of rectangles is similar to a read length histogram rotated vertically, seen from the top.

• **PCR Adapter Quality Distribution By Barcode**: Histogram distribution of the per-barcode version of the Read Length Distribution by PCR Adapter histogram.

Data > File Downloads

The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

• **Analysis Log**: Log information for the analysis execution.

• **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)

• **Reads Missing Adapters**: Reads Missing Adapters: BAM file containing the reads with missing PCR adapters from the input Data Set.

• **PCR Adapter Data CSV**: Includes the data displayed in the PCR Adapter Data table.

• **<Data Set> (trimmed)**: Output Data Set, with the PCR adapters removed.
Circular Consensus Sequencing (CCS)

Use this utility to identify consensus sequences for single molecules.

- The utility accepts Subreads (BAM format) as input.

Importing/exporting analysis settings

- Click Import Analysis Settings and select a previously-saved CSV file containing the desired settings (including Advanced Parameters) for the selected utility. The imported utility settings are set.
- Click Export to create a CSV file containing all the settings you specified for the utility. You can then import this file when creating future jobs using the same utility. You can also use this exported file as a template for use with later jobs.

Detect 5mC Sites (Default = OFF)

- If set to ON, kinetics analysis to identify 5mC CpG sites will be performed.

Parameters

<table>
<thead>
<tr>
<th>Advanced parameters</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum CCS Read Length</td>
<td>10</td>
<td>The minimum length for the median size of insert reads to generate a consensus sequence. If the targeted template is known to be a particular size range, this can filter out alternative DNA templates.</td>
</tr>
<tr>
<td>Maximum CCS Read Length</td>
<td>50,000</td>
<td>The maximum length for the median size of insert reads to generate a consensus sequence. If the targeted template is known to be a particular size range, this can filter out alternative DNA templates.</td>
</tr>
<tr>
<td>Generate a Consensus for Each Strand</td>
<td>OFF</td>
<td>Generate a consensus for each strand. Warning: This is an experimental option for the CCS algorithm, and may not be compatible with all downstream applications. We recommend using command-line analysis for this feature.</td>
</tr>
<tr>
<td>Process All Reads</td>
<td>OFF</td>
<td>Specifies behavior identical to on-instrument CCS reads generation, overriding all other cutoffs. This setting writes a CCS read for every ZMW in the input Data Set. Set to OFF to specify more restrictive settings.</td>
</tr>
<tr>
<td>Include Kinetics Information with CCS Analysis output</td>
<td>OFF</td>
<td>If ON, include kinetics per-base data required for methylation DNA analysis. Note: This results in a BAM file that is 3-4 times larger. This option applies only when Process All Reads is set to ON.</td>
</tr>
<tr>
<td>Advanced CCS Options</td>
<td>NONE</td>
<td>Space-separated list of additional command-line options to CCS analysis. Not all supported command-line options can be used, and HPC settings cannot be modified. See SMRT® Tools reference guide v11.0 for details.</td>
</tr>
<tr>
<td>Minimum Predicted Accuracy (Deprecated)</td>
<td>0.99</td>
<td>The minimum predicted accuracy of a read, ranging from 0 to 1. (0. 99 indicates that only reads expected to be 99% accurate are emitted.) Note: This setting is ignored if the Process All Reads advanced parameter is set to ON.</td>
</tr>
<tr>
<td>Minimum Number of Passes (Deprecated)</td>
<td>3</td>
<td>The minimum number of full passes for a ZMW to be used. Full passes must have an adapter hit before and after the insert sequence and so do not include any partial passes at the start and end of the sequencing reaction. Note: This setting is ignored if the Process All Reads advanced parameter is set to ON.</td>
</tr>
<tr>
<td>Detect And Split Heteroduplex Read</td>
<td>OFF</td>
<td>Specifies that any detected heteroduplexes are separated into separate reads.</td>
</tr>
</tbody>
</table>
The Circular Consensus Sequencing (CCS) utility generates the following reports:

CCS Analysis Report > Summary Metrics

Note: CCS reads with quality value equal to or greater than 20 are called HiFi reads.

- **HiFi Reads**: The total number of CCS reads whose quality value is equal to or greater than 20.
- **HiFi Yield (bp)**: The total yield (in base pairs) of the CCS reads whose quality value is equal to or greater than 20.
- **HiFi Read Length (mean, bp)**: The mean read length of the CCS reads whose quality value is equal to or greater than 20.
- **HiFi Read Quality (median)**: The median number of CCS reads whose quality value is equal to or greater than 20.
- **HiFi Number of Passes (mean)**: The mean number of passes used to generate CCS reads whose quality value is equal to or greater than 20.

CCS Analysis Report > HiFi Read Length Summary

- **Read Length (bp)**: The HiFi read length, ranging from ≥ 0 to $\geq 40,000$ base pairs.
- **Reads**: The number of HiFi reads with the specified read length.
- **Reads (%)**: The percentage of HiFi reads with the specified read length.
- **Yield (bp)**: The number of base pairs in the HiFi reads with the specified read length.
- **Yield (%)**: The percentage of base pairs in the HiFi reads with the specified read length.

CCS Analysis Report > HiFi Read Quality Summary

- **Read Quality (Phred)**: Phred-scale quality values, ranging from QV ≥ 20 to QV ≥ 50.
- **Reads**: The number of HiFi reads with the specified read quality.
- **Reads (%)**: The percentage of HiFi reads with the specified read quality.
- **Yield (bp)**: The number of base pairs in the HiFi reads with the specified read quality.
- **Yield (%)**: The percentage of base pairs in the HiFi reads with the specified read quality.

CCS Analysis Report > Read Length Distribution

- **HiFi Read Length Distribution**: Histogram distribution of HiFi reads by read length.
- **Yield by HiFi Read Length**: Histogram distribution of the cumulative yields of CCS reads by read length.
- **Read Length Distribution**: Histogram distribution of all reads by read length.
CCS Analysis Report > Number of Passes
• Histogram of the number of complete subreads in CCS reads, broken down by number of reads.

CCS Analysis Report > Read Quality Distribution
• Histogram distribution of the CCS reads by the Phred-scale read quality.

CCS Analysis Report > Predicted Accuracy vs. Read Length
• Heat map of CCS read lengths and predicted accuracies.

Data > File Downloads
The following files are available on the analysis results page. Additional files are available on the SMRT Link server, in the analysis output directory.

• **Analysis Log**: Log information for the analysis execution.
• **SMRT Link Log**: Server-level analysis log information. (This file is displayed when you choose Data > SMRT Link Log.)
• **CCS Analysis Per-Read Details**: Summary of CCS analysis performance and yield.
• **hifi_reads.fastq.gz**: Gzipped HiFi reads in FASTQ format.
• **hifi_reads.fasta.gz**: Gzipped HiFi reads in FASTA format.
• **hifi_reads.bam**: HiFi reads in BAM format.
• **All Reads (BAM)**: BAM file containing one CCS read per ZMW, including the following types of reads:
 – HiFi reads (Q20 or higher)
 – Lower-quality but still polished consensus reads (Q1-Q20)
 – Unpolished consensus reads (RQ=-1)
 – 0- or 1-pass subreads unaltered (RQ=-1)
Working with barcoded data

This section describes how to use SMRT Link to work with barcoded data. Demultiplex Barcodes analysis is powered by the lima SMRT Analysis tool.

The canned data provided with SMRT Link v11.0 includes 7 barcode sets:

- gDNA Amplification Adapter
- Iso-Seq 12 Barcoded cDNA Primers
- Iso-Seq cDNA Primers
- Barcoded Overhang Adapter Kits 8A and 8B
- Sequel 384 barcodes v1
- Barcoded M13 Primer Plate
- SMRTbell Barcoded Adapter Plate 3.0

SMRT Link v11.0 supports sample traceability through the various modules in the application by using the Bio Sample Name.

Run Design in SMRT Link v11.0 contains a required Bio Sample Name field for both single and multiplexed samples.

- For multiplexed experiments, SMRT Link provides default names for one Bio Sample Name per barcode, which can be edited as needed in the Barcoded Sample Names file.
- For multiplexed Iso-Seq Analysis only, Bio Sample Names are not required.

Well Sample Name and Bio Sample Name entered in Sequel II systems, and in Run Designs for multiplexed runs:

- Display as column values in the Data Management and SMRT Analysis modules.
- Display as Data Set attributes in the Data Set details page in Data Management.
- Populate the LB and SM tags in read group headers of BAM files containing basecalled data.

Example Well Sample Names and Bio Sample Names

- Non-barcoded Well Sample Name: HG002_2019_11_2_10K
- Non-barcoded Bio Sample Name: HG002
- Barcoded Well Sample Name: My Multiplexed Set of Bugs
- Barcoded Bio Sample Name:
 Unknown Microbe 1,...,Unknown Microbe N

Step 1: Specify the barcode setup and sample names in a Run Design

Note: If you specified the barcode setup in Run Design, the demultiplexing is performed automatically after the data is transferred to the SMRT link server. You can also specify the barcode setup manually by selecting SMRT Analysis > Create New Job and then selecting the Demultiplex Barcodes data utility.
1. In SMRT Link, create a new Run Design as described in “Creating a new Run Design” on page 16. Before you finish the new Run Design, perform the following steps.

2. Click **Barcoded Sample Options** and then click **Yes** for **Sample is Barcoded**. Additional fields related to barcoding display.

3. Specify a **Barcode Set** using the dropdown list.
 - **Note**: You can specify up to 10,000 samples. Specifying more than 10,000 samples may cause a delay of several minutes in analysis submission.

4. Specify if the same barcodes are used on both ends of the sequences.
 - Selecting **Yes** specifies symmetric and tailed designs where all the reads have the same barcodes on both ends of the insert sequence. Barcode analysis of such experiments retains only data with the same barcode identified on both ends.
 - Selecting **No** specifies asymmetric designs where the barcodes are different on each end of the insert. Barcode analysis of such experiments retains any barcode pair combination identified in the Data Set.

5. SMRT Link automatically creates a CSV-format **Autofilled Barcode Name** file. The barcode name is populated based on your choice of barcode set, and if the barcodes are the same at both ends of the sequence. The file includes a column of automatically-generated Bio Sample Names 1 through N, corresponding to barcodes 1 through N, for the biological sample names. There are two different ways to specify which barcodes to use, and assign biological sample names to barcodes. (Note: Bio Sample Names are hardcoded and can be traced through secondary analysis using SMRT Analysis.)

 Interactively:
 - Click **Interactively**, then drag barcodes from the **Available Barcodes** column to the **Included Barcodes** column. (Use the check boxes to select multiple barcodes.)
• **(Optional)** Click a Bio Sample field to edit the Bio Sample Name associated with a barcode. **Note:** Avoid using spaces in Bio Sample Names as they may lead to third-party compatibility issues.

• **(Optional)** Click Download as a file for later use.

• Click Save to save the edited barcodes/Bio Sample names. You see Success on the line below, assuming the file is formatted correctly.

From a File:

• Click From a File, then click Download File. Edit the file and enter the biological sample names associated with the barcodes in the second column, then save the file. Use alphanumeric characters, spaces (allowed but not recommended for compatibility with third-party downstream software), hyphens, underscores, colons, or periods only - other characters will be removed automatically, with a maximum of 40 characters. If you did not use all barcodes in the Autofilled Barcode Name file in the sequencing run, delete those rows.

• **Note:** Open the CSV file in a text editor and check that the columns are separated by commas, not semicolons or tabs.

• Select the Barcoded Sample file you just edited. You see Success on the line below, assuming the file is formatted correctly.

6. Specify if and where to automatically generate HiFi reads (reads generated with CCS analysis whose quality value is equal to or greater than 20):

 – **On Instrument** (available only for the Sequel IIe system): HiFi reads are automatically generated on the instrument, before transfer to the compute cluster where SMRT Link is installed.

 – **In SMRT Link:** HiFi reads are automatically generated after transfer to the compute cluster where SMRT Link is installed.

 – **Do Not Generate:** HiFi reads are not generated for this run. Only subread data are transferred to the local compute cluster where SMRT Link is installed.

7. Click Save.

Step 2: Perform the sequencing run

Load the samples and perform the sequencing run, using the Run Design you created in Step 1. The demultiplexing analysis is performed automatically on the SMRT Link server once the data is transferred from the Sequel II systems. This creates an analysis of type Demultiplex Barcodes (Auto) in the SMRT Analysis module. You can click to select this analysis and review the reports and data created. If everything looks fine, you can continue to Step 4 and use the demultiplexed Data Set(s) created by the run as input to further analysis.

Note: By default, Demultiplex Barcodes (Auto) creates one Data Set per autodetected barcode within the selected barcode set. It also applies a Data Set filter of a minimum barcode score greater than 26 for optimal results in secondary analysis. If used, the analysis parameter Filters to add to the Data Set overrides other barcode filtering, even if the barcode score set with it is lower than 26.
Step 3: (Optional) Run the Demultiplex Barcodes data utility

If instead you did **not** specify the barcode setup in the Run Design, or if you need to change any of the parameters used in the Demultiplex Barcodes analysis automatically launched from Run Design, run the Demultiplex Barcodes data utility. This separates reads by barcode and creates a new demultiplexed Data Set that you can then use as input to other secondary analysis applications.

1. Click + Create New Job.
2. Enter a name for the job.
3. Select Data Utility as the workflow type.
4. Select HiFi reads as the data type to use. The Data Sets table displays the appropriate Data Sets available for the job.
5. In the Data Sets table, select one or more Data Sets to be analyzed together.
6. Click Next.
7. Select Demultiplex Barcodes from the Applications list.
8. Specify a Barcode Set (barcode sequence file.)
 Note: You can specify up to 10,000 samples. Specifying **more** than 10,000 samples may cause a delay of several minutes in analysis submission.
9. Specify if the **same** barcodes are used on both ends of the sequences.
 - Selecting **Yes** specifies symmetric and tailed designs where **all** the reads have the same barcodes on both ends of the insert sequence. Barcode analysis of such experiments retains **only** data with the same barcode identified on both ends.
 - Selecting **No** specifies asymmetric designs where the barcodes are **different** on each end of the insert. Barcode analysis of such data retains any barcode pair combination identified in the Data Set.
10. SMRT Link automatically creates a CSV-format Autofilled Barcoded Sample file. The barcode name is populated based on your choice of barcode set, and if the barcodes are the same at both ends of the sequence. The file includes a column of automatically-generated Bio Sample Names 1 through N, corresponding to barcodes 1 through N, for the biological sample names. There are **two different ways** to specify which barcodes to use, and assign biological sample names to barcodes:

 Interactively:
 - Click **Interactively**, then drag barcodes from the Available Barcodes column to the Included Barcodes column. (Use the check boxes to select multiple barcodes.)
 - **(Optional)** Click a Bio Sample field to edit the Bio Sample Name associated with a barcode. **Note:** Avoid using spaces in Bio Sample Names as they may lead to third-party compatibility issues.
 - **(Optional)** Click **Download as a file for later use**.
 - Click **Submit** to save the edited barcodes/bio sample names. You see **Success** on the line below, assuming the file is formatted correctly.
From a File:

- Click **From a File**, then click **Download File**. Edit the file and enter the biological sample names associated with the barcodes in the second column, then save the file. Use alphanumeric characters, spaces (allowed but not recommended for compatibility with third-party downstream software), hyphens, underscores, colons, or periods only - other characters will be removed automatically, with a maximum of 40 characters. If you did not use all barcodes in the Autofilled Barcode Name file in the sequencing run, **delete** those rows.
- **Note**: Open the CSV file in a text editor and check that the columns are separated by **commas**, not semicolons or tabs.
- Select the **Barcoded Sample** file you just edited. You see **Success** on the line below, assuming the file is formatted correctly.

11. Specify the name for the new demultiplexed Data Set that will display in SMRT Link. The application creates a copy of the input Data Set, renames it to the name specified, and creates demultiplexed child Data Sets linked to it. The input Data Set remains separate and unmodified.

12. (Optional) Specify any advanced parameters.

13. Click **Start**. After the analysis is finished, a new demultiplexed Data Set is available.

Note: For information about the reports generated by the Demultiplex Barcodes data utility, see “Demultiplex Barcodes” on page 90.

Step 4: Run applications using the demultiplexed data as input

All secondary analysis applications except **Demultiplex Barcodes** can use demultiplexed Data Sets as input.

Note: For Iso-Seq analysis with barcoded samples, use the Iso-Seq application instead of the Demultiplex Barcodes data utility, as the Iso-Seq application already includes the demultiplexing step as part of the pipeline. When performing multiplexed Iso-Seq analysis, ensure that the Run Design **Sample Is Barcoded** option is set to **No** (the default setting). Then, in SMRT Analysis, go straight to the Iso-Seq application and, in the parameters section, select a Primer Set containing multiple primers, such as **IsoSeq_Primers_12_Barcodes_v1**.

1. Select the secondary analysis application/data utility to use.
2. Click the number in the **Demultiplexed Subsets** column, then select the demultiplexed Data Set to use as input:
- You can select the entire Data Set as input, or one or more specific outputs from selected barcodes, to a maximum of 16 sub-Data Sets, 12 for Iso-Seq.

3. Additional Analysis Type options become available. You can select from the following options:

- **One Analysis for All Data Sets**: Runs one job using all the selected barcode Data Sets as input, for a maximum of 30 Data Sets.

- **One Analysis per Data Set - Identical Parameters**: Runs one separate job for each of the selected barcode Data Sets, using the same parameters, for a maximum of 10,000 Data Sets. Optionally click Advanced Parameters and modify parameters.

- **One Analysis per Data Set - Custom Parameters**: Runs one separate job for each of the selected barcode Data Sets, using different parameters for each Data Set, for a maximum of 16 Data Sets. Click Advanced Parameters and modify parameters. Then click Start and Create Next. You can then specify parameters for each of the included barcode Data Sets.

- **Note**: The number of Data Sets listed is based on testing using PacBio's suggested compute configuration, listed in SMRT Link software installation guide (v11.0).

4. Click Start to submit the job.

Demultiplex Barcodes details The Demultiplex Barcodes data utility identifies barcode sequences in PacBio single-molecule sequencing data.
Demultiplex Barcodes can demultiplex samples that have a unique per-sample barcode pair and were pooled and sequenced on the same SMRT Cell. There are four different methods for barcoding samples with PacBio technology:

1. Barcoded target-specific primers
2. Barcoded universal primers
3. Barcoded overhang adapters
4. Barcoded linear adapters (target capture)

In addition, there are three different barcode library designs.

The **Demultiplex Barcodes** application in SMRT Link supports demultiplexing of subreads.

Demultiplexing of CCS reads is possible using the command line. (See **SMRT® Tools reference guide (v11.0)** for details.)
Symmetric mode

For symmetric and tailed library designs, the same barcode is attached to both sides of the insert sequence of interest. The only difference is the orientation of the trailing barcode. For barcode identification, one read with a single barcode region is sufficient. Symmetric barcoding is used for samples constructed using Barcoded overhang adapters, Barcoded universal primer and target enrichment (linear). This is also the default scoring mode in SMRT Link v10.2 and later.

Asymmetric mode

Barcode sequences are different on the ends of the SMRTbell template. Asymmetric mode is used with the M13 barcoding procedure. (See the document *Procedure & checklist - Preparing SMRTbell libraries using PacBio barcoded M13 primers for multiplex SMRT sequencing* for details.) PacBio using this mode only for small inserts (up to 5 kb) where both ends of the insert are expected to be sequenced. Both barcodes must be detected.

Note: For both Symmetric and Asymmetric modes, the limit for unique individual barcode sequences is 768, and the limit for the number of different barcode pairs is 10,000.

When running the Demultiplex Barcodes data utility in SMRT Link, set the Same Barcodes on Both Ends of the Sequence option to Off.

Mixed mode

Libraries with combined symmetric and asymmetric barcoding are not supported.
Automated analysis

Auto Analysis and **Pre Analysis** allow a specific analysis to be **automatically** run after a sequencing run has finished and the data is transferred to the SMRT Link server. The analysis can include demultiplexed output.

- Auto Analysis can be set up in Run Design or SMRT Analysis **after** the Run Design is saved and **before** the run is loaded on the instrument.
- Auto Analysis can be run on HiFi reads, and includes **all** analysis applications available.
- Auto Analysis works with **all** Sequel II systems.

Pre Analysis is the process of CCS analysis and/or demultiplexing of Sequel basecalled data. Pre Analysis occurs **before** Auto Analysis, and is defined when you create a Run Design and specify one or more of the following:

- Read Type = **HiFi reads** and Generate HiFi reads = **On Instrument** or **In SMRT Link**.
- Read Type = **HiFi reads** and Sample is Barcoded = **Yes**.

Note: Pre Analysis works with **all** Sequel II systems.

Creating an Auto Analysis job from SMRT Analysis

This procedure includes only the basic steps - for more detailed information on creating jobs, see "Creating and starting a job" on page 44.

1. Access SMRT Link using the Chrome web browser.
2. Select **SMRT Analysis**.
3. Click **+ Create New Job**.
4. Enter a **name** for the job.
5. Specify **Auto Analysis** as the workflow type. The table displays available runs. (**Note**: Runs display here **only** if they are in the **Created** state - not if they are already running or have completed.)
6. Click a **Collections** link associated with a specific run in the table.
7. Select one sample, or drill down further and select from the barcoded samples of a single collection by clicking the **Barcoded Samples** link. You can select multiple barcoded samples at this level. **Note**: You **cannot** select a mix of samples and barcoded samples, or select barcoded samples from multiple samples. In addition, samples or barcoded samples will **not** be selectable if they have a Job Id.
8. Click **Next**.
9. Select a secondary analysis application from the dropdown list. **Note**: Only analysis applications, not data utilities, are available for use with Auto Analysis.
10. **(Optional)** Click **Advanced Parameters** and specify the values of the parameters to change. Click **OK** when finished. (Different applications have different advanced parameters.)
To see information about parameters for all secondary analysis applications provided by PacBio, see “PacBio® secondary analysis applications” on page 54.

11. Click **Start** to submit the Auto Analysis job.

Creating Auto Analysis from a Run Design

1. Create a new Run Design (See “Creating a new Run Design” on page 16 for details) and save it. The **Auto Analysis** button is enabled only **after** you save the Run Design.
2. Click **Auto Analysis**. This takes you into SMRT Analysis, where you create the new job that will be associated with the collection.
3. Name the new job.
4. Click the numbered **Collections** link (Column 2 of the Runs table) associated with the run that you defined in Step 1. (**Note:** Runs display here **only** if they are in the **Created** state - not if they are already running or have completed.)
5. Select a collection for analysis.
6. Click **Next**.
7. Select a secondary analysis application to use for the analysis.
8. **(Optional)** Click **Advanced Parameters** and specify the values of the parameters to change. Click **OK** when finished. To see information about parameters for all secondary analysis applications provided by PacBio, see “PacBio® secondary analysis applications” on page 54.
9. Click **Create**.

HiFiViral SARS-CoV-2: Creating Auto Analysis in Run Design

The **HiFiViral SARS-CoV-2** Application includes a streamlined version of Auto Analysis as part of creating a Run Design.

1. In Run Design, click **Create New Design**.
2. From the Application list, select **HiFiViral SARS-CoV-2**. Preloaded default values display in green.
3. Enter the **Well Sample Name**.
4. By default, **Auto Analysis** is set to **Yes** for **Automatic Launch of SARS-CoV-2 Analysis**.
5. Enter the **Analysis Name**.
6. By default, **Yes** is selected for **Sample Is Barcoded** and **No** for **Same Barcode on Both End of Sequence**.
7. By default, the barcode set **HiFiViral SARS-CoV-2 M13barcodes** is selected.
8. For **Assign Bio Sample Names to Barcodes**, select **From a File** and then click **Download File**.
9. Open the downloaded file (**assayPlateQC_template_4by96.csv**) in a text editor. See “HiFiViral SARS-CoV-2 Analysis” on page 54 for details on modifying this file for your samples.

Getting information about analyses created by Auto Analysis

There are several ways to obtain information on the state of an analysis created using the Auto Analysis feature.
From SMRT Analysis:

1. On the home page, select **SMRT Analysis**. You see a list of **all** jobs.
2. To filter the jobs, click the funnel in the **State** column header, then click **Created**. This displays **only** jobs in the **Created** state.
3. Click the job of interest.
4. Click the **From Multi-Job** link.
5. Click **Analysis Overview > Status of Individual Analyses**. This displays information about the analysis, including the application used.

From Run Design:

1. On the home page, select **Run Design**.
2. Click the Run Design of interest.
3. Click the **From Multi-Job** link.
4. Scroll all the way to the right in the table. This displays information about the samples included in the run.
5. Click the **Auto Analysis ID** link for a sample. This displays information about the analysis, including the application used.

Getting information about Pre Analysis from SMRT Analysis

1. On the home page, select **SMRT Analysis**. You see a list of **all** jobs.
2. To filter the jobs, click the funnel in the **State** column header, then click **Created**. This displays **only** jobs in the **Created** state.
3. Click the job of interest.
4. Click the **Pre Analysis** link.
5. Click **Analysis Overview > Status of Individual Analyses**. This displays information about the Pre Analysis, including the application used.

Getting information about Pre Analysis from Run Design

1. On the home page, select **Run Design**.
2. Click the Run Design of interest.
3. On the left side (above the consumables list), click the **Pre Analysis ID** link. This displays information about the Pre Analysis, including the application used.
Visualizing data using IGV

Once an analysis has successfully completed, visualize the results using the **Integrative Genomics Viewer (IGV)**.

- See [here](#) for further installation instruction and usage details.
- See [here](#) for PacBio-specific settings and visualizations.

You can visualize data generated by the following secondary analysis applications:

- Iso-Seq Analysis
- HiFi Mapping
- Microbial Genome Analysis
- Structural Variant Calling

IGV requires the following files for visualization:

- One consolidated alignment BAM file
- BAM index file
- Genome reference file

If an analysis generates **multiple** alignment BAM files, those files must **first** be combined into one consolidated alignment BAM file for visualization with IGV.

SMRT Link **defaults** to combining chunked alignment BAM files if the combined file sizes are **10 GB or less**.

- When creating an analysis, you can specify that SMRT Link combines alignment BAM files for IGV visualization by setting the **Consolidate Mapped BAMs for IGV** option to **ON**.

 Note: This setting **doubles** the amount of storage used by the BAM files, which can be considerable. Make sure to have enough disk space available. This setting may also result in longer run times.

To visualize data using IGV

1. Create and run the analysis.
2. After the analysis has finished successfully, go to the **Data > IGV Visualization Files** section of the analysis report page.
3. Open IGV and select the reference genome used for the analysis. (See [here](#) for instructions on how to load a genome.)
4. Copy a BAM file link from the **Data > IGV Visualization Files** section of the analysis report page.

 Note: If you are performing **de novo** assembly, you **must** use links to the **draft** assembly BAM files, which are clearly labeled.
5. In IGV, choose **File > Load from URL...** and paste the link into the File URL input field. Click **OK**.

6. Repeat for the remaining links.

If you ran an analysis and there are **no Data > IGV Visualization Files** links, the analysis generated multiple alignment BAM files over 10 GB, but **did not** consolidate the files. Click the **Launch BAM Consolidation** button to consolidate them.
Using the PacBio® self-signed SSL certificate

SMRT Link v11.0 ships with a PacBio self-signed SSL certificate. If this is used at your site, security messages display when you try to login to SMRT Link for the first time using the Chrome browser. These messages may also display other times when accessing SMRT Link.

1. The first time you start SMRT Link after installation, you see the following. Click the Advanced link.

2. Click the Proceed... link. (You may need to scroll down.)

3. Close the window by clicking the Close box in the corner.

 The Login dialog displays, where you enter the User Name and Password. The next time you access SMRT Link, the Login dialog displays directly.
Sequel® II system and Sequel Ile system output files

This section describes the data generated by the Sequel Ile system and Sequel II system for each SMRT Cell transferred to network storage.

Sequel Ile system output files

Following is a sample of the file and directory structure output by the Sequel Ile system (not including low-quality reads):

```bash
<your_specified_output_directory>/r64012_211206ee_183753/1_A01/
|--m64012ee_211206_183753.baz2bam_1.log
|--m64012ee_211206_183753.ccs.log
|--m64012ee_211206_183753.ccs_reports.json
|--m64012ee_211206_183753.ccs_reports.txt
|--m64012ee_211206_183753.consensusreadset.xml
|--m64012ee_211206_183753.hifi.reads.bam
|--m64012ee_211206_183753.hifi.reads.bam.pbi
|--m64012ee_211206_183753.sts.xml
|--m64012ee_211206_183753.zmw_metrics.json.gz
|--m64012ee_211206_183753.transferdone
```

If 5mC CpG Detection is performed, the following additional files are output:

```bash
|-- m64012ee_211206_183753.5mc_report.json
|-- m64012ee_211206_183753.primrose.log
```

If on-instrument demultiplexing is performed, the following additional files are output. **Note:** The undemultiplexed hifi Reads bam file is not transferred; it is partitioned into the file structure shown below:

```bash
|-- bc1001--bc1001/m64012e_211206_183753_bc1001--bc1001_consensusreadset.xml
|-- bc1001--bc1001/m64012e_211206_183753.hifi_reads_bc1001--bc1001.bam
|-- bc1001--bc1001/m64012e_211206_183753.hifi_reads_bc1001--bc1001.bam.pbi
|-- m64012e_211206_183753.barcode.fasta
|-- m64012e_211206_183753.lima.log
|-- m64012e_211206_183753.lima_counts.txt
|-- m64012e_211206_183753.lima_guess.json
|-- m64012e_211206_183753.lima_guess.txt
|-- m64012e_211206_183753.lima_reports.txt
|-- m64012e_211206_183753.lima_summary.txt
|-- m64012e_211206_183753.unbarcoded_consensusreadset.xml
|-- m64012e_211206_183753.unbarcoded.hifi_reads.bam
|-- m64012e_211206_183753.unbarcoded.hifi_reads.bam.pbi
```

In these examples:

- `r64012ee_211206_183753` is a directory containing the output files associated with one run.
- `r64012ee` is the instrument ID number.
The run directory includes a subdirectory for each collection/cell associated with a sample well - in this case 1_A01. The collection/cell subdirectory can include the following output files:

- **ccs.log**: Log file from the CCS analysis. Informative for debugging and performance tracking by PacBio.
- **ccs_reports.json, ccs_reports.txt**: Contains processing metrics summarizing how many ZMWs generated HiFi reads, and how many ZMWs failed to generate CCS reads. These files contain the same information, and are used internally by PacBio Technical Support.
- **hifi.reads.bam**: Contains the HiFi reads in BAM format.

 Note: If low-quality reads are included in the Run Design, the Sequel IIe system will output a reads.bam file, which contains HiFi reads and non-HiFi reads:
 - HiFi reads (QV 20 or higher)
 - Lower-quality but still polished consensus reads (QV 1 - QV 20)
 - Unpolished consensus reads (RQ=-1)
 - 0- or 1-pass subreads unaltered (RQ=-1)

 The reads.bam file should **not** be used by itself as input for non-SMRT Link tools that expect ≥QV 20. The BAM format is a binary, compressed, record-oriented container format for raw or aligned sequence reads. The associated SAM format is a text representation of the same data. The BAM specifications are maintained by the SAM/BAM Format Specification Working Group. BAM files produced by all Sequel II systems are fully compatible with the BAM specification. For more information on the BAM file format specifications, click [here](#).
- **hifi.reads.bam.pbi**: Index file that allows for random access of HiFi reads in the BAM file.
- **sts.xml**: Contains summary statistics about the collection/cell and its post-processing.
- **zmw_metrics.json.gz**: Contains processing information used to generate RunQC plots.
- **5mc_report.json, primrose.log**: Contains information about 5mC CpG Detection analysis (using the primrose tool), if performed.
- **<Barcode Name>.consensusreadset.xml**: Contains reads associated with a specific barcode.
- **<Barcode Name>.bam**: Contains HiFi reads associated with a specific barcode, in .bam format.
- **<Barcode Name>.bam.pbi**: Index file that allows for random access of HiFi reads in the BAM file.
- **<Barcode Name>.fasta**: Contains reads associated with the specific barcode, in FASTA format.
- **lima.log**: Log file from the demultiplexing analysis, if performed. Informative for debugging and performance tracking by PacBio.
- **lima.counts.txt**: Contains the counts of each observed barcode pair. Only passing ZMWs are counted.
• lima.guess.json, lima.guess.txt: Describes the barcode subsetting process activated using the --peek and --guess options. These files contain the same information, and are used internally by PacBio Technical Support.

• lima.reports.txt: A tab-separated file describing each ZMW, unfiltered. This is useful information for investigating the demultiplexing process and the underlying data. A single row contains all reads from a single ZMW.

• lima.summary.txt: Lists how many ZMWs were filtered, how many ZMWs are the same or different, and how many reads were filtered.

• unbarcoded.consensusreadset.xml, unbarcoded.hifi_reads.bam unbarcoded.hifi_reads.bam.pbi: Contains information on HiFi reads not associated with any barcode.

Note: The Sequel IIe system runs CCS on-instrument by default and the subreads.bam, subreads.bam.pbi, scraps.bam and scraps.bam.pbi files are no longer generated and are not available. Even though the subreads.bam and subreads.bam.pbi files are not accessible by default, there is a mechanism available to enable their output. For detailed instructions on how to enable the output of these files, contact your Field Applications Support team members.

HiFi reads generation

A standard Run Design performs on-instrument CCS analysis **without** including low-quality reads and generates a hifi_reads.bam file and transfers it to the network server. If low-quality reads are included in the Run Design, the Sequel IIe system will produce a reads.bam file, which contains HiFi reads and non-HiFi reads, and should **not** be used unfiltered as input for tools that expect ≥QV 20. SMRT Link **automatically** launches an Export Reads job on the reads.bam to filter out the HiFi reads, and generates the following HiFi data files by default:

- `<Movie_Name>.hifi_reads.fastq.gz` - Gzipped FASTQ file containing HiFi reads.
- `<Movie_Name>.hifi_reads.fasta.gz` - Gzipped FASTA file containing HiFi reads.
- `<Movie_Name>.hifi_reads.bam` - BAM file containing HiFi reads.

If **not** using SMRT Link for subsequent analysis, use these three files as input with any third-party analysis tools.

Finding the hifi_reads files generated using On-Instrument CCS

1. In Run QC, click the desired run, then click the sample name to view the CCS Data Set.
2. Click *Analyses* in the left-side panel.
3. Click the *Export Reads* analysis.
4. To locate the directory containing the three `hifi_reads` files, append `/outputs` to the path shown.

Sequel II system output files

Following is a sample of the file and directory structure output by the Sequel II system:

```
<your_specified_output_directory>/r64008_20160116_003347/1_A01
|-- m64008_160116_003634.baz2bam_1.log
|-- m64008_160116_003634.scraps.bam
|-- m64008_160116_003634.scraps.bam.pbi
|-- m64008_160116_003634.subreads.bam
|-- m64008_160116_003634.subreads.bam.pbi
|-- m64008_160116_003634.subreadset.xml
|-- m64008_160116_003634.sts.xml
|-- m64008_160116_003634.transferdone
```

Files output by the Sequel II system include:

- **scraps.bam** and **scraps.bam.pbi**: These files contain sequence data outside of the high-quality region, rejected subreads, excised adapter and possible barcode sequences, as well as spike-in control sequences. (The basecaller marks regions of single molecule sequence activity as high-quality.) **Note**: This applies to files generated by Sequel Instrument Control Software (ICS) v3.1.0 or later.

- **subreads.bam**: The Sequel II system output one subreads.bam file per collection/cell, which contains unaligned base calls from high-quality regions. This file is transferred from the instrument to network storage, then is used as input for secondary analysis by PacBio’s SMRT Analysis software. Data in a subreads.bam file is analysis-ready; all of the data present should be quality-filtered for analyses. Subreads that contain information such as double-adapter inserts or single-molecule artifacts are **not** used in secondary analysis, and are excluded from this file and placed in scraps.bam.
- **subreads.bam.pbi**: Provides backwards-compatibility with the APIs enabled for accessing the cmp.h5 file.
- **subreadset.xml**: This file is needed to import data into SMRT Link.
- **sts.xml**: Contains summary statistics about the collection/cell and its post-processing.
- **transferdone**: Contains a list of files successfully transferred.

Frequently asked questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
</table>
| What are the minimum files needed to analyze data on SMRT Link? | • **.bam file**
• **bam.pbi file**
• **subreadset.xml or consensusreadset.xml file** |
| What is the average size of the file bundle for a 30-hour movie of HiFi reads? | Approximately 50 Gb. |
| What is the difference between a regular .bam file and an aligned.bam file? | The **subreads.bam** file contains all the subreads sequences, while the **aligned.bam** file additionally contains the genomic coordinates of the reads mapped to a reference sequence.

The **subreads.bam** file is created by the Sequel II systems, while the **aligned.bam** file is created by SMRT Link after running mapping analysis applications. |
Secondary analysis output files

This is data produced by secondary analysis, which is performed on the primary analysis data generated by the instrument.

- All files for a specific job reside in one directory named according to the job ID number.
- Every job result has the following file structure. Example:

```
$SMRT_ROOT/userdata/jobs_root/0000/00000000/0000000002/
  cromwell-job -> $SMRT_ROOT/userdata/jobs-root/cromwell-executions/
  pb_demux_subreads_auto/24e691c8-8d0d-4670-9db3-c7cb126e8f8
  entry-points
     ae6f1c2c-b4a2-41cc-8e44-98b494f12a57.subreadset.xml
  logs
     pb_simple_mapping
      24e691c8-8d0d-4670-9db3-c7cb126e8f8
         call-mapping
            execution
                stderr
                stdout
         workflow.24e691c8-8d0d-4670-9db3-c7cb126e8f8.log
  outputs
     mapping.report.json -> $SMRT_ROOT/userdata/jobs-root/cromwell-executions/
      pb_simple_mapping/24e691c8-8d0d-4670-9db3-c7cb126e8f8/call-mapping/execution/
                     mapping.report.json
     mapped.bam -> $SMRT_ROOT/userdata/jobs-root/cromwell-executions/
      pb_simple_mapping/24e691c8-8d0d-4670-9db3-c7cb126e8f8/call-mapping/execution/
                     mapped.bam
     pbscala-job.stdout
     pbscala-job.stderr
  workflow
     analysis-options.json
     datastore.json
     engine-options.json
     inputs.json
     metadata.json
     metadata-summary.json
     task-timings.metadata.json
     timing-diagram.html
```

- `logs/`: Contains log files for the job.
 - `workflow.<UUID>.log`: Global log of each significant step in the job and snippets from a task's `stderr` output if the job failed.
 - The same directory contains `stdout` and `stderr` for individual tasks.

- `cromwell-job/`: Symbolic link to the actual Cromwell execution directory, which resides in another part of the `jobs-root` directory. Contains subdirectories for each workflow task, along with executable scripts, output files, and `stderr/stdout` for the task.
 - `call-tool_name/execution/`: Example of an individual task directory (This is replaced with `<task_id>` below.)
 - `<task_id>/stdout`: General task `stdout` log collection.
 - `<task_id>/stderr`: General task `stderr` log collection.
- `<task_id>/script`: The SMRT Tools command for the given analysis task.
- `<task_id>/script.submit`: The JMS submission script wrapping run.sh.
- `<task_id>stdout.submit`: The stdout collection for the script.submit script.
- `<task_id>/stderr.submit`: The stderr collection for the script.submit script.
- `workflow/`: Contains JSON files for job settings and workflow diagrams.
 - `datastore.json`: JSON file representing all output files imported by SMRT Link.
- `outputs/`: A directory containing symbolic links to all datastore files, which reside in the Cromwell execution directory. This is provided as a convenience and is not intended as a stable API; note that external resources from dataset XML and report JSON file are not included here. Demultiplexing outputs are nested in additional subdirectories.
 - `pbscala-job.stderr`: Log collection of stderr output from the SMRT Link job manager.
 - `pbscala-job.stdout`: Log collection of stdout output from the SMRT Link job manager. (Note: This is the file displayed as Data > SMRT Link Log on the analysis results page.)

A SMRT Link job generates several types of output files. You can use these data files as input for further processing, pass on to collaborators, or upload to public genome sites. Depending on the analysis application being used, the output directory contain files in the following formats:

- **BAM**: Binary version of the Sequence Alignment Map (SAM) format. (See here for details.)
- **BAI**: The samtools index file for a file generated in the BAM format.
- **BED**: Format that defines the data lines displayed in an annotation track. (See here for details.)
- **CSV**: Comma-Separated Values file. Can be viewed using Microsoft Excel or a text editor.
- **FASTA/FASTQ**: Sequence files that contains either nucleic acid sequence (such as DNA) or protein sequence information. FASTA/Q files store multiple sequences in a single file. FASTQ files also include per-base quality scores. (See here or here for details.)
- **GFF**: General Feature Format, used for describing genes and other features associated with DNA, RNA and protein sequences. (See here for details.)
- **PBI**: PacBio index file. (This is a PacBio-specific file type.)
- **VCF**: Variant Call Format, for use with the molecular visualization and analysis program VMD. (See here for details.)
To download data files created by SMRT Link:

1. On the home page, select **SMRT Analysis**. You see a list of all jobs.
2. Click the job link of interest.
3. Click **Data > File Downloads**, then click the appropriate file. The file is downloaded according to your browser settings.
 - **(Optional)** Click the small icon to the right of the file name to copy the file’s path to the Clipboard.
Configuration and user management

LDAP
SMRT Link supports the use of LDAP for user login and authentication. Without LDAP integration with SMRT Link, only one user (with the login admin/admin) is enabled. You can add new users after SMRT Link is integrated and configured to work with LDAP; you can also add new users using WSO2 API Manager or Keycloak without LDAP integration.

- For details on integrating LDAP and SMRT Link, see the document SMRT Link software installation guide (v11.0).

SSL
SMRT Link requires the use of Secure Sockets Layer (SSL) to enable access via HTTP over SSL (HTTPS), so that SMRT Link logins and data are encrypted during transport to and from SMRT Link. SMRT Link includes an Identity Server (WSO2 API Manager or Keycloak), which can be configured to integrate with your LDAP/AD servers and enable user authentication using your organizations’ user name and password. To ensure a secure connection between the SMRT Link server and your browser, the SSL certificate can be installed after completing SMRT Link installation.

It is important to note that PacBio will not provide a signed SSL certificate, however – once your site has obtained one – PacBio tools can be used to install it and configure SMRT Link to use it. You will need a certificate issued by a Certificate Authority (CA, sometimes referred to as a certification authority). PacBio has tested SMRT Link with certificates from the following certificate vendors: VeriSign, Thawte and digicert.

Note: PacBio recommends that you consult your IT administrator about obtaining an SSL certificate.

Alternatively, you can use your site’s self-signed certificate.

SMRT Link ships with a PacBio self-signed SSL certificate. If used, each user will need to accept the browser warnings related to access in an insecure environment. Otherwise, your IT administrator can configure desktops to always trust the provided self-signed certificate. Note that SMRT Link is installed within your organization’s secure network, behind your organization’s firewall.

- For details on updating SMRT Link to use an SSL certificate, see the document SMRT Link software installation guide (v11.0).
The following procedures are available only for SMRT Link users whose role is **Admin**.

Adding and deleting SMRT Link users
1. Choose **Gear > Configure**, then click **User Management**.
2. There are two ways to find users:
 - To display all SMRT Link users: Click **Display all Enabled Users**.
 - To find a specific user: Enter a user name, or partial name, and click **Search By Name**.
3. Click the desired user. If the user status is **Enabled**, the user has access to SMRT Link; **Disabled** means the user cannot access SMRT Link.
 - To add a SMRT Link user: Click the **Enabled** button, then assign a role. (See below for details.)
 - To disable a SMRT Link user: Click the **Disabled** button.
4. Click **Save**.

Assigning user roles
SMRT Link supports three user roles: **Admin**, **Lab Tech**, and **Bioinformatician**. Roles define which SMRT Link modules a user can access. The following table lists the privileges associated with the three user roles:

<table>
<thead>
<tr>
<th>Tasks/privileges</th>
<th>Admin</th>
<th>Lab Tech</th>
<th>Bioinformatician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add/delete SMRT Link users</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Assign roles to SMRT Link users</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Update SMRT Link software</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Access Sample Setup module</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Access Run Design module</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Access Run QC module</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Access Data Management module</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Access SMRT Analysis module</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

1. Choose **Gear > Configure**, then click **User Management**.
2. There are two ways to find users:
 - To display all SMRT Link users: Click **Display all Enabled Users**.
 - To find a specific user: Enter a user name, or partial name, and click **Search By Name**.
3. Click the desired user.
4. Click the **Role** field and select one of the three roles. (A blank role means that this user cannot access SMRT Link.)
• **Note:** There can be *multiple* users with the Admin role; but there **must** always be at least **one** Admin user.

5. Click **Save**.
Hardware/software requirements

Client hardware requirements
 • SMRT Link requires a minimum screen resolution of 1600 by 900 pixels.

Client software requirements
 • SMRT Link requires the Google® Chrome web browser, version 90 or later.

Note: SMRT Link server hardware and software requirement are listed in the document SMRT Link software installation guide (v11.0).
Appendix A - PacBio terminology

General terminology

• **SMRT® Cell**: Consumable substrates comprising arrays of zero-mode waveguide nanostructures. SMRT Cells are used in conjunction with the DNA sequencing kit for on-instrument DNA sequencing.

• **SMRTbell® template**: A double-stranded DNA template capped by hairpin adapters (i.e., SMRTbell adapters) at both ends. A SMRTbell template is topologically circular and structurally linear, and is the library format created by the DNA template prep kit.

• **collection**: The set of data collected during real-time observation of the SMRT Cell; including spectral information and temporal information used to determine a read.

• **Zero-mode waveguide (ZMW)**: A nanophotonic device for confining light to a small observation volume. This can be, for example, a small hole in a conductive layer whose diameter is too small to permit the propagation of light in the wavelength range used for detection. Physically part of a SMRT Cell.

• **Run Design**: Specifies
 - The samples, reagents, and SMRT Cells to include in the sequencing run.
 - The run parameters such as movie time and loading to use for the sample.

• **adaptive loading**: Uses active monitoring of the ZMW loading process to predict a favorable loading end point.

• **unique molecular yield**: The sum total length of unique single molecules that were sequenced. It is calculated as the sum of per-ZMW median subread lengths.

Read terminology

• **polymerase read**: A sequence of nucleotides incorporated by the DNA polymerase while reading a template, such as a circular SMRTbell template. They can include sequences from adapters and from one or multiple passes around a circular template, which includes the insert of interest. Polymerase reads are most useful for quality control of the instrument run. Polymerase read metrics primarily reflect movie length and other run parameters rather than insert size distribution. Polymerase reads are trimmed to include only the high-quality region. **Note**: Sample quality is a major factor in polymerase read metrics.

• **subreads**: Each polymerase read is partitioned to form one or more subreads, which contain sequence from a single pass of a polymerase on a single strand of an insert within a SMRTbell template and no adapter sequences. The subreads contain the full set of quality values and kinetic measurements. Subreads are useful for applications such as *de novo* assembly, base modification analysis, and so on.

• **longest subread length**: The mean of the maximum subread length per ZMW.
• **insert length**: The length of the double-stranded nucleic acid fragment in a SMRTbell template, excluding the hairpin adapters.

• **circular consensus (CCS) reads**: The consensus sequence resulting from alignment between subreads taken from a single ZMW. Generating CCS reads does **not** include or require alignment against a reference sequence but **does** require at least two full-pass subreads from the insert. CCS reads are generated with CCS analysis. CCS reads with quality value equal to or greater than 20 are called **HiFi reads**.

• **HiFi reads**: Reads generated with CCS analysis whose quality value is equal to or greater than 20.

Read length terminology

• **mapped polymerase read length**: Approximates the sequence produced by a polymerase in a ZMW. The total number of bases along a read from the first adapter of aligned subread to the last adapter or aligned subread.

• **mapped subread length**: The length of the subread alignment to a target reference sequence. This does **not** include the adapter sequence.

Secondary analysis terminology

• **secondary analysis**: Follows primary analysis and uses basecalled data. It is application-specific, and may include:
- Filtering/selection of data that meets a desired criteria, such as quality, read length, and so on.
- Comparison of reads to a reference or between each other for mapping and variant calling, consensus sequence determination, alignment and assembly (de novo or reference-based), variant identification, and so on.
- Quality evaluations for a sequencing run, consensus sequence, assembly, and so on.
- PacBio’s SMRT Analysis contains a variety of secondary analysis applications including RNA and Epigenomics analysis tools.

- **secondary analysis application**: A secondary analysis workflow that may include multiple analysis steps. Examples include de novo assembly, RNA and epigenomics analysis.
- **consensus**: Generation of a consensus sequence from multiple-sequence alignment.
- **filtering**: Removes reads that do not meet the Read Length criteria set by the user.
- **mapping**: Local alignment of a read or subread to a reference sequence.
- **Auto Analysis**: Allows a specific analysis to be automatically run after a sequencing run has finished and the data is transferred to the SMRT Link server. The analysis can include demultiplexed outputs.
 - Auto Analysis works with all Sequel II systems.
- **Pre Analysis**: The process of CCS analysis and/or demultiplexing of Sequel basecalled data. Pre Analysis occurs before Auto Analysis.
 - Pre Analysis works with all Sequel II systems.

Accuracy terminology

- **circular consensus accuracy**: Accuracy based on consensus sequence from multiple sequencing passes around a single circular template molecule.
- **consensus accuracy**: Accuracy based on aligning multiple sequencing reads or subreads together.
- **polymerase read quality**: A trained prediction of a read’s mapped accuracy based on its pulse and base file characteristics (peak signal-to-noise ratio, inter-pulse distance, and so on).
Appendix B - Data search

Use this function to search for jobs, Data Sets, barcode files, or reference files.

To search the entire table
1. Enter a text query into the Search box. This searches every field in the table, and displays all table rows containing the search characters.

To search for a value within a column
1. Click the small filter icon at the right of the column name.
2. Enter a value; all table rows meeting the search criteria display.
 (To select a different search operator, click the droplist and select another search operator. Different search operators are available, based on the column’s data type.)

• For the Analysis State column only, click one or more of the job states of interest: Select All, Created, Running, Submitted, Terminated, Successful, Failed, or Aborted.
• For Date fields only, click the small calendar and select a date.

Numeric field operators
 - Equals, Not equal
 - Greater than, Greater than or equals
- Less than, Less than or equals
- In range

Text field operators
- Contains, Not contains
- Equals, Not equal
- Starts with, Ends with

Date field operators
- Equals, Not equal
- Greater than, Less than
- In range
Appendix C - BED file format for Target Regions report

With the HiFi Mapping application, an optional Target Regions report can be generated that displays the number (and percentage) of reads and subreads that hit specified target regions.

The BED file required to generate the Target Regions report includes the following fields; with one entry per line:

1. chrom: The name of the chromosome (such as chr3, chrY, chr2_random) or scaffold (such as scaffold10671).
2. chromStart: The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
3. chromEnd: The ending position of the feature in the chromosome or scaffold. The chromEnd base is not included in the display of the feature, however, the number in position format is represented. For example, the first 100 bases of chromosome 1 are defined as chrom=1, chromStart=0, chromEnd=100, and span the bases numbered 0-99 (not 0-100), but will represent the position notation chr1:1-100.
4. (Optional) Region Name.

Example: lambda_NEB3011 15000 25000 Region2

- Fields can be space- or tab-delimited.
- See here for details of the BED format.
- For details on the BED format's counting system, see here and here.
Appendix D - Additional information included in the CCS Data Set Export report

When you export a Data Set and select Export PDF Reports, a report is produced which includes additional fields, listed below.

- See “Exporting sequence, reference and barcode data” on page 42 for details on exporting Data Sets.
- The other fields and plots in this report are described in the appropriate Reports sections of “PacBio® secondary analysis applications” on page 54.

- **ZMWs input:** The total number of ZMWs used as input in the Data Set.
- **ZMWs pass filters:** The number of ZMWs that passed all the filters.
- **ZMWs fail filters:** The number of ZMWs that failed any of the filters.
- **ZMWs shortcut filters:** The number of low-pass ZMWs skipped using the --all filter.
- **ZMWs with tandem repeats:** The number of ZMWs that did not generate CCS reads due to repeats larger than --min-tandem-repeat-length.
- **Below SNR threshold:** The number of ZMWs that did not generate CCS reads due to SNR below --min-snr.
- **Median length filter:** The number of ZMWs that did not generate CCS reads due to subreads that are <50% or >200% of the median subread length.
- **Lacking full passes:** The number of ZMWs that did not generate CCS reads due to having fewer than --min-passes full-length subreads.
- **Heteroduplex insertions:** The number of ZMWs that did not generate CCS reads due to single-strand artifacts.
- **Coverage drops:** The number of ZMWs that did not generate CCS reads due to coverage drops that would lead to unreliable polishing results.
- **Insufficient draft cov:** The number of ZMWs that did not generate CCS reads due to not having enough subreads aligned to the draft sequence end-to-end.
- **Draft too different:** The number of ZMWs that did not generate CCS reads due to having fewer than --min-passes full-length reads aligned to the draft sequence.
- **Draft generation error:** The number of ZMWs that did not generate CCS reads due to subreads that don't agree enough to generate a draft sequence.
- **Draft above --max-length:** The number of ZMWs that did not generate CCS reads due to a draft sequence longer than --max-length.
- **Draft below --min-length:** The number of ZMWs that did not generate CCS reads due to a draft sequence shorter than --min-length.
- **Reads failed polishing:** The number of ZMWs that did not generate CCS reads due to too many subreads dropped while polishing.
• **Empty coverage windows**: The number of ZMWs that did not generate CCS reads because at least one window had no coverage.

• **CCS did not converge**: The number of ZMWs that did not generate CCS reads because the draft sequence had too many errors that could not be polished in time.

• **CCS below minimum RQ**: The number of ZMWs that did not generate CCS reads because the predicted accuracy is below `--min-rq`.

• **Unknown error**: The number of ZMWs that did not generate CCS reads due to rare implementation errors.