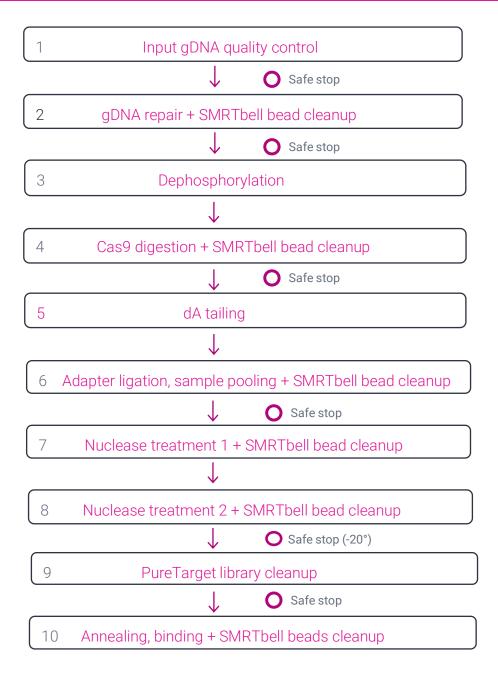
Generating PureTarget™ libraries with PureTarget kit 96 – automation protocol

Procedure & checklist


Before you begin

This procedure describes the workflow for generating PureTarget repeat expansion or carrier libraries.

Overview	
Samples	96
Library prep time	16 hours with the Hamilton NGS STAR MOA system
DNA input	
Quantity	$1-1.5~\mu g$ in Elution buffer, TE buffer (pH 8, 0.1mM EDTA), or nuclease-free water
DNA size distribution	50% ≥30 kb on Femto Pulse system; DIN >8 on TapeStation system
Sample multiplexing	
Revio® system with SPRQ™ chemistry	96 samples

Workflow overview

Materials and equipment

Recommended DNA sizing	
Femto Pulse system	Agilent Technologies, Inc. M5330AA
Femto Pulse gDNA 165kb analysis kit	Agilent Technologies, Inc. FP-1002-0275
TapeStation system	Agilent Technologies, Inc. G2992AA or G2991BA
DNA quantitation	
Qubit fluorometer	ThermoFisher Scientific Q33238
Qubit 1X dsDNA HS assay kit	ThermoFisher Scientific Q33230
Target enrichment and library preparation	
PureTarget™ repeat expansion panel 2.0 or	PacBio® 103-633-100
PureTarget™ carrier panel or	PacBio® 103-633-200
PureTarget™ repeat control panel	PacBio® 103-633-300
PureTarget™ cleanup beads kit	PacBio [®] 103-633-000
PureTarget™ cleanup buffer kit	PacBio® 103-682-800
PureTarget™ kit 2.0	PacBio® 103-632-900*
HiFi plex prep kit 96	PacBio® 103-122-800*
SMRTbell® cleanup beads-10mL (qty 2)	PacBio® 102-158-300*
Elution buffer	PacBio® 101-633-500*
SMRTbell® adapter index plate 96A (for barcoding) or	PacBio® 102-009-200
SMRTbell® adapter index plate 96B (for barcoding) or	PacBio [®] 102-547-800
SMRTbell® adapter index plate 96C (for barcoding) or	PacBio [®] 102-547-900
SMRTbell® adapter index plate 96D (for barcoding)	PacBio [®] 102-548-000
Revio® SPRQ™ polymerase kit (store at -20C upon arrival)	PacBio [®] 103-496-900
General lab supplies and equipment	
200 Proof ethanol, molecular biology or ACS grade	Any major lab supplier (MLS)
8-channel pipettes	Any MLS
96-well PCR plate	BioRad Hard-Shell 96-Well PCR Plates #HSP9601
Abgene 96 Well 0.8 mL Polypropylene Deepwell Storage Plate	ThermoFisher Scientific, AB0859
Microcentrifuge	Any MLS
Magnum FLX magnetic plate (springs removed)	Alpaqua, A000400
Magnetic separation rack compatible with 1.5 mL tubes	Any MLS (e.g., Invitrogen DynaMag-2 Magnet 12321D)
Thermocycler compatible with 0.2 mL tube strips	Any MLS
Nuclease-free (NF) water	Any MLS, molecular biology grade
1.5 mL DNA LoBind tubes	Eppendorf 022431021
*Sold together as part of the PureTarget™ kit 96 bundle	

General best practices

DNA input

For optimal performance, this protocol recommends high-quality, high molecular weight (HMW) human gDNA with at least 50% of the mass of DNA in molecules at \geq 30 kb in length (genome quality number (GQN) of \geq 5 at 30 kb) based on the Agilent Femto Pulse system, or a DIN value >8 on the Agilent TapeStation. For low-quality human gDNA, it is still feasible to proceed, but lower coverage is expected.

Note: Removal of RNA with RNAse is required for any DNA extraction method used. Failure to remove RNA may result in sequencing inhibition.

The supported sample types are:

- **Human blood genomic DNA**: extracted by Nanobind® RBC lysis PanDNA kit, Nanobind Whole blood manual CBB kit/PanDNA kit, Nanobind HT 200 µL protocol, Nanobind HT 1 mL protocol
- Human B-lymphocyte cell lines: extracted by Nanobind CBB kit/ PanDNA kit, Nanobind CBB HT; Coriell cell line gDNA (GQN_{30kb} ≥5).

For information on the performance of other extraction methods, see Application note - <u>Comprehensive genotyping</u> with the <u>PureTarget repeat expansion panel and HiFi sequencing</u>.

The protocol supports 1- 1.5 μg per sample. 1.3- 1.5 μg per sample is highly recommended for samples going through the gDNA repair step, to ensure sufficient mass to achieve optimal target coverage. A maximum mass of 150 μg of gDNA input (across 96 samples) is recommended for a single Revio system + SPRQ chemistry SMRT® Cell.

Multiplexing samples

Revio system with SPRQ chemistry

Each PureTarget kit bundle supports one preparation of 96 samples using the automation protocol.

Reagent and sample handling

- For a quick guide on master mix preparation and plating, see Appendix 1.
- Room temperature is defined as any temperature in the range of 18–23°C for this protocol.
- Do not vortex enzymes.
- Bring SMRTbell cleanup beads to room temperature. Always vortex immediately prior to use.
- Bring Qubit reagents to room temperature prior to use.
- Thaw frozen reagents at room temperature. Place on ice after thawing.
- Keep master mixes involving temperature-sensitive reagents on ice until use.
- Quick-spin all reagents in a microcentrifuge to collect liquid at the bottom prior to use.
- Samples can be stored at the specified temperature at the safe stopping points listed in the protocol.

Library preparation reagents

Kits stored at -20°C.

PureTarget kit 2.0			
Step used	Tube	Reagent	
Dephosphorylation	Blue	Phosphatase	
Cas9 digestion	Green	Cas9 Nuclease	
Dephosphorylation/Cas9 digestion	Red	Cas9 buffer	
dA tailing/Nuclease treatment	Orange	dA tail buffer	
dA tailing	Violet	Taq DNA Polymerase	
dA tailing	Yellow	dATP	
Nuclease treatment	White	Pure Target Nuclease	
PureTarget panel			
	White	Repeat expansion panel 2.0 or	
Cas9 digestion	Purple	Carrier panel or	
	Orange	Control panel	
HiFi plex prep kit 96			
gDNA repair	Purple	Repair buffer M96	
gDNA repair	Blue	End repair mix M96	
gDNA repair	Green	DNA repair mix M96	
Adapter ligation	Yellow	Ligation mix M96	
Adapter ligation	Red	Ligation enhancer M96	
Nuclease treatment	Light green	Nuclease mix M96	
SMRTbell adapter index plate			
Adapter ligation	White plate	SMRTbell adapter index plate 96A, 96B, 96C, or 96	

PureTarget cleanup beads kit

Keep at room temperature.

Component	Tube color
PureTarget cleanup wash buffer*	Bottle, white
PureTarget cleanup binding buffer	Bottle, white
PureTarget cleanup beads	Clear

*Important: Prior to the first use of the PureTarget cleanup beads kit, add 15 mL of 200 proof ethanol to PureTarget cleanup wash buffer and mix well. Store bottles upright to prevent leakage. Ensure bottle cap is tightly screwed on and store bottles upright to prevent leakage.

PureTarget cleanup buffer kit

Keep at room temperature.

Component	Tube color
PureTarget cleanup buffer 1	Red
PureTarget cleanup buffer 2	Blue
PureTarget cleanup buffer 3	Green

Revio SPRQ polymerase kit

Kit stored at -20°C.

Component	Tube color
Annealing buffer	Light blue
Standard sequencing primer	Light green
Polymerase buffer	Yellow
Loading buffer	Green
Dilution buffer	Blue
Sequencing polymerase	Purple
Sequencing control	Red

Note: Bring the Loading buffer to room temperature prior to use. The Loading buffer is light sensitive and should be protected from light when not in use.

Note: The Revio SPRQ polymerase kit supplies reagent volumes sufficient for 12 SMRT Cells for PureTarget.

Safety precautions

Refer to the Safety Data Sheet (SDS) for information on reagent hazards and protocols for safe handling, use, storage, and disposal.

Thermocycler conditions

Program thermocycler(s) prior to beginning the protocol for the first time. If the lid temperature is not adjustable, set the lid temperature to "ON".

Note: Maintaining the lid temperature at 10°C higher than the incubation temperature is designed to minimize condensation. If the lid does not cool to the recommended values, performance will not be impacted. As long as the block temperature is accurate and the lid temperature is at least 10°C above the incubation temperature for heated steps, the enzymatic reactions will proceed as expected.

1.DNA repair program

Set the lid temperature to ≥65°C.

Step	Time	Temperature
1	60 min	37°C
2	30 min	52°C
3	Hold	4°C

2. Dephosphorylation program

Set the lid temperature to ≥95°C.

Step	Time	Temperature
1	50 min	37°C
2	5 min	85°C
3	Hold	4°C

3. Cas9 digestion program

Set the lid temperature to ≥65°C.

Step	Time	Temperature
1	60 min	37°C
2	Hold	4°C

4. dA-tail program

Set the lid temperature to ≥95°C.

Step	Time	Temperature
1	1 min	37°C
2	5 min	72°C
3	Hold	4°C

5. Adapter ligation program

Set the lid temperature to "OFF" or ≥30°C.

Step	Time	Temperature
1	30 min	20°C or RT
2	Hold	4°C

6. Nuclease treatment-1/ -2 program

Set the lid temperature to ≥65°C.

Step	Time	Temperature
1	(1) 30 min/ (2) 60 min	37°C
2	Hold	4°C

Workflow steps

1. Input DNA quality control and dilution

Before you begin, evaluate the quantity and size distribution of input DNA using Agilent Femto Pulse system or TapeStation system to determine whether it is suitable for the protocol.

✓	Step	Instructions
	1.1	Bring the Qubit 1X dsDNA HS working solution and standards to room temperature .
		Pulse vortex and/or pipette-mix each sample 5 times to homogenize the DNA in solution.
	1.2	Note : For viscous input DNA, it is important to homogenize the extracted DNA prior to start of the protocol. To homogenize the DNA, pulse-vortex and/or pipette-mix full sample volume with standard (not wide bore) tips. These steps will maintain HMW of your DNA but will improve accuracy of quantification and subsequent handling.
	1.3	Quick-spin each sample to collect liquid.
	1.4	Take a 1 μL aliquot from each sample and dilute with 9 μL of Elution buffer or water.
	1.5	Measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit.
	1.6	Measure DNA size distribution with a Femto Pulse system using the gDNA 165 kb analysis kit. Or Measure DNA size distribution with a TapeStation system using the Genomic DNA ScreenTape Analysis
	1.7	Aliquot or bring 1- 1.5 μ g DNA to a final volume of 30 μ L per sample (33- 50 η mg/ μ L) with nuclease-free water or Elution buffer. This protocol supports 1- 1.5 μ g per sample. However, 1.3- 1.5 μ g per sample is highly recommended for samples requiring the gDNA repair step.

2. gDNA repair

This step repairs input genomic DNA, which increases target coverage when using lower quality gDNA. For Nanobind extracted blood (whole blood or RBC lysis method) gDNA, this step can be skipped.

V	Step	Instructions								
		Add th	Add the following components to a microcentrifuge tube.							
		gDN	gDNA repair master mix							
		~	Reagent	Component	Volume per sample	Volume per 96-plex (overage included)				
	2.1			Nuclease-free water	0.94 μL	117 μL				
			Purple	Repair buffer M96	3.5 μL	454 μL				
			Green	DNA repair mix M96	0.5 μL	70 μL				
			Blue	End repair mix M96	0.06 μL	8 μL				
			Total volume 5 μL 649 μL							

- 2.2 Pulse-vortex mix and quick-spin the gDNA repair master mix.
- Add **5 \muL** of the **gDNA repair master mix** to each gDNA sample from step 1.8 for a total reaction volume of **35 \muL**.
- 2.4 Pipette-mix and quick-spin.

Run the DNA repair thermocycler program. Set the lid temperature to ≥65°C.

2.5

Step	Time	Temperature
1	60 min	37°C
2	30 min	52°C
3	Hold	4°C

1.2X SMRTbell bead cleanup

- 2.6 Add 42 µL of resuspended, room-temperature SMRTbell cleanup beads to each sample.

 2.7 Pipette-mix the beads until evenly distributed. Bead clumping may occur and is not a concern. Avoid over-pipetting as it may cause DNA/bead mixture to stick to the pipette tip.

 2.8 Incubate at room temperature for 10 minutes to allow DNA to bind beads.

 2.9 Place on a magnetic separation rack and allow beads to separate fully from the solution.
 - 2.10 Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.
 - Slowly dispense **200 \muL**, or enough to cover the beads, of **freshly prepared 80% ethanol** into each well. After **30 seconds**, remove the 80% ethanol and discard.
 - 2.12 Repeat the previous step.
 - 2.13 Remove residual 80% ethanol and discard.

2.14	Remove the plate from the magnetic rack. Immediately add 26 μL of Elution buffer to each well and fully resuspend the beads.
2.15	Incubate at room temperature for 5 minutes to elute DNA.
2.16	Place the plate on a magnetic separation rack and allow beads to separate fully from the solution.
2.17	Slowly transfer $26~\mu L$ cleared eluate without disturbing the beads to a new plate. Discard the old plate with beads.
2.18	(Optional) QC step: Take a 1 μ L each sample and measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit. Expect a step recovery of 70-90% per sample .
2.19	Proceed to the next step of the protocol.

SAFE STOPPING POINT - Store at 4°C overnight or -20°C long term

3. Dephosphorylation

This step dephosphorylates the genomic DNA 5' termini, which prevents adapter ligation to non-targeted genomic DNA.

✓ Step	Instruc	Instructions					
	Add th	e following	components to a new m	icrocentrifuge tube			
	Deph	osphorylati	on master mix				
	~	Tube color	Component	Volume per sample	Volume per 96-plex (overage included)		
3.1			Nuclease-free water	0.9 μL	110 μL		
		Red	Cas9 buffer	3 μL	389 μL		
		Blue	Phosphatase	1.1 μL	150 μL		
			Total volume	5 μL	674 μL		
3.2	Pulse v liquid.	ortex-mix t	he Dephosphorylation m	naster mix and quic	k-spin in a microcentrifuge to collec		
3.2	liquid. Add 5						
	liquid. Add 5 volume	μ L of the D	ephosphorylation maste		k-spin in a microcentrifuge to collectering left from step 2.17 for a total reaction		
3.3	liquid. Add 5 volume Pipette	μ L of the D e of 30 μL .e-mix each s	ephosphorylation maste	r mix to each samp	le from step 2.17 for a total reaction		
3.3	liquid. Add 5 volume Pipette	μ L of the D e of 30 μL .e-mix each s	ephosphorylation maste	r mix to each samp program. Set the lid	le from step 2.17 for a total reaction		
3.3	liquid. Add 5 volume Pipette	μ L of the D e of 30 μL .e-mix each s	ephosphorylation maste sample. horylation thermocycler p	r mix to each samp program. Set the lid	le from step 2.17 for a total reaction temperature to ≥95°C.		
3.3	liquid. Add 5 volume Pipette	μ L of the D e of 30 μL .e-mix each s	ephosphorylation maste sample. horylation thermocycler p	r mix to each samp program. Set the lid Time	le from step 2.17 for a total reaction temperature to ≥95°C.		

3.6 Proceed to the next step of the protocol.

4. Cas9 digestion and SMRTbell cleanup

This step enables digestion of double-stranded DNA at targeted regions mediated by Cas9-gRNA ribonucleoprotein complex formation.

✓ Step	Instruc	Instructions							
	Add the	Add the following components to a new microcentrifuge tube.							
		(Cas9 digestion mas	ter mix					
	~	Reagent	Component		Volume per sample	Volume per 96-plex (overage included)			
			Nuclease-free	water	3.75 µL	489 µL			
4.1		Red	Cas9 buffe	er	0.5 μL	65 μL			
		Green	Cas9 Nuclea	ase	0.15 µL	19 μL			
		Variable	PureTarget pa	anel*	0.6 μL	76 μL			
			Total volur	ne	5 μL	649 µL			
	*Repeat 6	expansion 2.0, Carrier	, or Control panel						
4.2	Pulse v	ortex-mix Cas9 d	igestion master m	ix and quick-	-spin in a microce	ntrifuge to collect liquic			
4.3	Add 5 _I	JL of the Cas9 dig	gestion master mix	to each san	nple for a total rea	action volume of 35 µL .			
4.4	Pipette	-mix each sample	9						
	Run the	e Cas9 digestion	thermocycler prog	ram. Set the	lid temperature to	o ≥65°C.			
4.5			Step	Time	Temperature				
			1	60 min	37°C				
			2	Hold	4°C				

1.2X SMRTbell bead cleanup

46	Add 42 ul of	resuspended	, room-temperature	SMRThell clean	in heads to each	ch sample

17	Pipette-mix the beads slowly until evenly distributed. Bead clumping may occur and is not a
4.7	concern. Avoid over-pipetting as it may cause DNA/bead mixture to stick to the pipette tip.

- 4.8 Incubate at **room temperature** for **10 minutes** to allow DNA to bind beads.
- 4.9 Place plate on a magnetic separation rack until beads separate fully from the solution.
- 4.10 Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.
- 4.11 Slowly dispense **200 μL** of **freshly prepared 80% ethanol** into each tube. After **30 seconds**, remove the 80% ethanol and discard.
- 4.12 Remove residual 80% ethanol and discard.

4.13	Remove plate from the magnetic rack. Immediately add $23~\mu L$ of Elution buffer to each well and resuspend the beads.
4.14	Incubate at room temperature for 5 minutes to elute DNA.
4.15	Place plate on a magnetic separation rack until beads separate fully from the solution.
4.16	Slowly transfer ${\bf 23~\mu L}$ cleared eluate without disturbing the beads to a new plate . Discard old plate with beads.
4.17	(Optional) QC step: Take a 1 μ L aliquot from each sample and dilute with 9 μ L of Elution buffer or water. Measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit.
	Expect a step recovery of 50-80% per sample.

SAFE STOPPING POINT – Store at 4°C overnight or -20°C long term

5. dA-tail

This step enables A-tailing of DNA 3' ends after Cas9-gRNA digestion at targeted regions.

~	Step	Instructions							
		Add the following components to a new microcentrifuge tube.							
		dA-ta	ailing master	mix					
		V	Reagent	Component	Volume per sample	Volume per 96-plex (overage included)			
	5.1			Nuclease-free water	1.125 μL	152 μL			
			Orange	dA tail buffer	2.6 μL	350 μL			
			Yellow	dATP (100 mM)	0.025 μL	4 μL			
			Violet	Taq DNA polymerase	0.25 μL	34 µL			
				Total volume	4 μL	540 μL			
	5.2	Pulse	vortex-mix th	e dA-tailing master mix	and quick-spin ir	a microcentrifuge to collect liquid.			
	5.3	Add 4 μL of the dA-tailing master mix to 22 μL of each sample for a total reaction volume of μ L.							
	5.4	Pipette	e mix each sa	mple.					
		Run th	e dA-tail ther	mocycler program. Set t	he lid temperatu	re to ≥95°C.			
		5	Step	Time Tempera	ture				
	5.5		1	1 min 37°C					
			2	5 min 72°C					
			3	Hold 4°C					

5.6 Proceed to the next step of the protocol.

6. Adapter ligation and SMRTbell cleanup

This step ligates the indexed SMRTbell adapter to the ends of each targeted DNA fragment.

✓ Step Instructions

6.1 Add **4 µL SMRTbell adapter index** to each sample from Section 5 and pipette mix.

Add the following components to a new microcentrifuge tube.

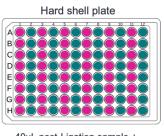
Note: Aspirate and dispense viscous ligation mix slowly to reduce liquid sticking to the exterior and interior wall of the pipette tip.

Liga	Ligation master mix									
~	Reagent	Component	Volume per sample	Volume Per 96-plex (overage included)						
		Nuclease-free water	0.5	62						
	Yellow	Ligation mix M96	9.0 µL	1124 μL (pipette 562 μL twice)*						
	Red	Ligation enhancer M96	0.5 μL	68 µL						
		Total volume	10 μL	1260 µL						

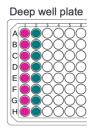
^{*}Pipetting Ligation mix in a smaller volume twice minimizes liquid retention in the tip.

- 6.3 Pulse vortex-mix the **Ligation master mix** and quick-spin in a microcentrifuge to collect liquid.
- 6.4 Add 10 μ L of Ligation master mix to each sample from previous step for a total volume of 40 μ L.
- 6.5 Pipette-mix each sample

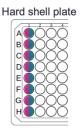
Run the Adapter ligation thermocycler program. Set the lid temperature to "OFF" or ≥30°C.

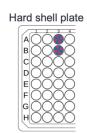

6.6

6.2


Step	Time	Temperature
1	30 min	20°C
2	Hold	4°C

Sample pooling, cleanup with 1X SMRTbell cleanup beads


In the following steps, the 96 ligation reactions are pooled after the addition of SMRTbell beads into 16 pools for the post-ligation clean-up. Further pooling happens at each subsequent step.


40uL post-Ligation sample + 40uL SMRTbell cleanup beads


Pooled post-Ligation samples (6 samples per well) at 480uL volume, elute in 32uL per well

Pooled sample eluates going into nuclease treatment1, at 62uL per well

Pooled post-Nuclease1 sample eluates into nuclease treatment2, at 62uL per well

Final library at 56uL

6.7 Add **40 µL** (1X) of resuspended, room-temperature SMRTbell cleanup beads to each sample.

6.8	Pipette-mix until evenly distributed.
6.9	Incubate at room temperature for 2 minutes to allow DNA to bind beads.
6.10	Consolidate the ligated sample/SMRTbell cleanup bead mixture from step 6.9 into 16 wells of a new deep well plate for a final sample volume of 480 μ L per well.
6.11	Incubate at room temperature for 10 minutes to allow DNA to bind beads.
6.12	Place the plate on a magnetic separation rack for 5 minutes until beads separate fully from the solution.
6.13	Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.
6.14	Slowly dispense $500~\mu L$ of freshly prepared 80% ethanol into each tube. After 30 seconds, remove the 80% ethanol and discard.
6.15	Remove residual 80% ethanol and discard.
6.16	Remove from the magnetic rack. Immediately add $32\mu L$ of Elution buffer to each sample and resuspend the beads.
6.17	Incubate at room temperature for 5 minutes to elute DNA.
6.18	Place in a magnetic separation rack until beads separate fully from the solution.
6.30	Slowly pool 31 μL of the cleared eluate from the 2 columns into 8 new wells on a new hard-shell plate (A1-H1), for a total volume of 62 μL per well .
6.31	Optional QC step: Take a 1 μ L aliquot from each pooled sample and dilute with 9 μ L of Elution buffer or water. Measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit. Expect a step recovery of 70-90% per sample.

SAFE STOPPING POINT - Store at 4°C overnight or -20°C long term

7. Nuclease treatments 1 & 2

This step removes DNA fragments that have not formed SMRTbell libraries.

V	Step	Instructions				
		Add	the following c	omponents to a new micro	centrifuge tube.	
		Nι	uclease master	mix		
		~	Reagent	Component	Volume per sample	Volume per 96-plex (10 reactions, overage included)
			Orange	dA tail buffer	7 μL	87 μL
	7.1		Light Green	Nuclease mix M96	4.5 µL	56 μL
			White	PureTarget Nuclease*	1.5 µL	19 μL
				Total volume	13 µL	162 μL
		*Located in the PureTarget kit 2.0				
			ortant: this ma	ster mix will be used for BC	OTH Nuclease tre	eatment 1 AND Nuclease

7.2 Pulse-vortex mix the **Nuclease master mix** and quick-spin in a microcentrifuge to collect liquid.

Nuclease treatment 1

- Add 13 μ L of Nuclease master mix to 62 μ L of each sample for a total volume of 75 μ L.

 Important: Save the remaining Nuclease master mix and place on ice at all times.
- 7.4 Pipette-mix each sample.

Run the **Nuclease treatment 1** thermocycler program. Set the lid temperature to ≥65°C.

7.5

Step	Time	Temperature
1	30 min	37°C
2	Hold	4°C

1.2X SMRTbell cleanup

- Add **90 µL** of SMRTbell cleanup beads to each nuclease treated sample (8 total) for a total volume of 165 µL per well. Pipette-mix until the beads are evenly distributed. Pipette-mix full volume.
- 7.7 Incubate at **room temperature** for **10 minutes** to allow DNA to bind beads.
- 7.8 Place the tube in a magnetic separation rack until beads separate fully from the solution.
- 7.9 Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.
- 7.10 Slowly dispense **200 μL** of **freshly prepared 80% ethanol** into each tube. After **30 seconds**, remove the 80% ethanol and discard.
- 7.11 Remove residual 80% ethanol and discard.
 - Consolidate 8 samples down to 4. Remove the plate from the magnetic rack. Immediately add 32
- 7.12 μL of Elution buffer to the 2nd set of 4 wells (E1-H1) and resuspend the beads by pipette mixing. Aspirate the entire volume (set at 35 μL) in each of the 4 wells and transfer to the 1st set of 4 wells (A1-D1) and resuspend the beads by pipetting mixing.
- 7.13 Incubate at **room temperature** for **5 minutes** to elute DNA.
- 7.14 Place on a magnetic separation rack until beads separate fully from the solution.
- 7.15 Consolidate 4 samples down to 2. Slowly pool 31 μL of cleared eluate from 4 wells (A1-D1) into 2 wells (A3, B3) on the same plate for a final volume of 62 μL per well.
- (Optional) QC step: Take a **1 \muL** aliquot from the pooled sample and measure DNA concentration 7.16 with a Qubit fluorometer using the 1X dsDNA HS kit.

Note: Expect a step recovery of 0.1-2%.

Nuclease treatment 2

- 7.17 Add 13 μ L of Nuclease master mix to 62 μ L of the sample in wells (A3, B3) that has gone through nuclease treatment 1 for a total volume of 75 μ L.
- 7.18 Pipette-mix the sample.

Run the **Nuclease treatment 2** thermocycler program. Set the lid temperature to ≥65°C.

Step	Time	Temperature	
1	60 min	37°C	
2	Hold	4°C	

1.2X SMRTbell bead cleanup

Add 90 µL of SMRTbell cleanup beads to each nuclease treated sample.

- 7.21 Pipette-mix until the beads are evenly distributed. 7.22 Incubate at room temperature for 10 minutes to allow DNA to bind beads. 7.23 Place the plate on a magnetic separation rack until beads separate fully from the solution. 7.24 Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant. Slowly dispense 200 µL of freshly prepared 80% ethanol into each tube. After 30 seconds, 7.25 remove the 80% ethanol and discard. 7.26 Repeat the previous step. 7.27 Remove residual 80% ethanol and discard. Remove from the magnetic rack. Immediately add 29 µL of Elution buffer to the well and pipette 7.28 mix until fully resuspended.
 - 7.29 Incubate at **room temperature** for **5 minutes** to elute DNA.
 - 7.30 Place the tube in a magnetic separation rack until beads separate fully from the solution.
 - 7.31 Consolidate 2 samples down to 1. Pool 28 μ L eluate from each well without disturbing the beads to a new well (A5) for a final volume of a final volume of 56 μ L in a 1.5 ml Eppendorf.

QC step: Take a 1 μ L aliquot from each sample and measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit.

- Note: Expect an overall recovery of 0.01-0.1% relative to the starting gDNA total mass. For example, starting with 1.5 µg input per sample, the final mass of a pooled 96-plex library recovered at this step is expected to be in the range of 15 ng-150 ng. A higher than the expected library yield may indicate inefficient nuclease digestion, or sample incompatibility with the protocol.
- 7.33 Proceed to the next step of the protocol.

7.20

SAFE STOPPING POINT - Store at -20°C

8. PureTarget cleanup of the SMRTbell library

This step will prepare the library ready for sequencing.

Perform one cleanup per final pool of 96 samples.

All reagents in PureTarget cleanup kit should be stored at room-temperature; do not chill or freeze any reagent.

Vortex buffers in PureTarget cleanup kit prior to use.

Prior to the 1st use of the PureTarget cleanup beads kit, add 15mL of 200 Proof ethanol to PureTarget cleanup wash buffer and mix well.

~	Step	Instructions					
	8.1	Add 28 μL PureTarget cleanup buffer 1 (●) to 55 μL SMRTbell library from step 7.30 and pipette-mix.					
	Add the following components to a new microcentrifuge tube.						
		PureTarget clear	nup buffer 2+3 mix				
		✓ Reagent	Component	Volume per sample	Volume (overage included)		
	8.2	Blue	PureTarget cleanup buffer 2	14 µL	19 μL		
	0.2	Green	PureTarget cleanup buffer 3	14 µL	19 μL		
			Total volume	28 µL	38 µL		
		Pulse vortex to mix and quick-spin.					
		•	arget cleanup buffer 2 and buff individually to sample, yield ma		ore-mixed prior to	adding to	
	8.3	Add 28 µL of pre-mixed PureTarget cleanup buffer 2+3 mix to the mixture from step 8.1 and pipette mix. The solution will become opaque and cloudy after homogenous mixing. Incubate at room temperature for 1 minute.					
	8.4	Centrifuge at 13,0	00 rcf for 2 minutes at room te	mperature.			
	8.5	Taking care to avoid the pellet, transfer 95 µL of the clear supernatant to a new 1.5 mL LoBind tube. Discard the tube with pellet.					

	Add the following components to a new microcentrifuge tube.						
	PureTarget cle	PureTarget cleanup bead binding master mix					
8.6	✓ Reagent	Component	Volume per sample	Volume (overage included)			
	Clear	PureTarget cleanup beads	5 μL	7 μL			
	White	PureTarget cleanup binding buffer	100 μL	140 µL			
		Total volume	105 µL	147 μL			
	Pulse vortex to r	nix and quick-spin.					
8.7	Add 105 µL of fu sample (step 8.5	ully resuspended PureTarget cleanup 5).	bead binding m	naster mix to 95	μ L of the		
8.8	· ·	mes until evenly distributed. Incubate mixing to keep beads in suspension.	at room temp	erature for 10 m	nins, with		
8.9	Place in a magn	etic separation rack until beads separ	ate fully from t	he solution.			
8.10	Slowly remove t	he cleared supernatant without distur	bing the beads	. Discard the su	pernatant.		
Slowly dispense 150 µL of PureTarget cleanup wash buffer (with ethan e Remove the tube from the magnetic separation rack and gently resusper Important: ensure that 15 mL of ethanol has been added to PureTarget prior to first use.							
8.12	8.12 Place the tube in a magnetic separation rack until beads separate fully from the solution.						
8.13	Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.						
8.14	Slowly dispense 200 µL of PureTarget cleanup wash buffer (with ethanol added) into the well without disturbing the bead pellet. After 30 seconds , remove the PureTarget cleanup wash buffer and discard.						
8.15	, ,	200 μL of fresh 80% ethanol into the s, remove the 80% ethanol and discar		isturbing the be	ad pellet.		
8.16	 It is critical to remove residual 80% ethanol for efficient elution: Remove the tube from the magnetic separation rack. Quick-spin the tube in a microcentrifuge. Place the tube back in a magnetic separation rack until beads separate fully from the solution. Remove residual 80% ethanol and discard. Air dry the bead pellet for 2 min. 						
8.17	Remove the tube	e from the magnetic rack. Add 26 μL	of Elution buffe	er and resusper	nd the beads.		
8.18	Incubate at room temperature for 15 minutes to elute DNA, with gentle vortexing every 5 mins to fully resuspend the beads.						
8.19	Place the tube in	n a magnetic separation rack until bea	ıds separate fu	lly from the solu	ution.		

8.20 Slowly transfer **26** μ L cleared supernatant without disturbing the beads to a new **1.5** mL DNA LoBind tube.

QC step: Take a $1~\mu L$ aliquot from the sample and measure DNA concentration with a Qubit fluorometer using the 1X dsDNA HS kit.

8.21 Expect an overall recovery of 0.005-0.05% relative to starting gDNA total mass, and a step recovery of 40-60%. For example, starting with 1.5 μg input per sample, the final mass of a pooled 96-plex library recovered at this step is expected to be in the range of 7.2 ng-72 ng.

SAFE STOPPING POINT - Store at 4°C overnight or -20°C long term

9. Annealing, binding, and cleanup (ABC)

This step is for preparing the SMRTbell library (25 µL) for sequencing on Revio +SPRQ.

✓ Step	Inst	Instructions					
	Prepare the appropriate volume of master mix with 10% overage using the per reaction volume below.						
	An	nealing mix					
9.1	~	Tube	Component	Volume	Volume (overage included)		
		Light blue	Annealing buffer	12.5 µL	15 μL		
		Light green	Standard sequencing primer	12.5 µL	15 μL		
			Total volume	25 μL	30 μL		
9.2	Pipe	tte-mix the Anne	aling mix and quick spin to collec	ct liquid.			
9.3	Add	Add 25 μL of the Annealing mix to each library for a total volume of 50 μL .					
9.4	Pipe	Pipette-mix each sample and quick spin to collect liquid.					
9.5	Incu	Incubate at room temperature for 15 minutes .					
9.6	Duri	ng primer incuba	tion, prepare the polymerase dilu	ition (see be	elow) and store on ic		

To prepare the polymerase, add the following components to a new microcentrifuge tube on ice.
Adjust component volumes for the number of samples being prepared, plus 10% overage.

Poly	Polymerase Dilution							
•	Tube	Component	Volume	Volume (overage included)				
	Yellow	Polymerase buffer	44 µL	53 µL				
	Purple	Sequencing polymerase	6 µL	7 μL				
		Total volume	50 μL	60 μL				

- **9.8** Pipette mix the **polymerase dilution** and quick-spin to collect liquid.
- 9.9 Add 50 μ L of polymerase dilution to primer annealed sample for a total volume of 100 μ L.
- 9.10 Pipette-mix each sample and quick-spin to collect liquid.
- 9.11 Incubate at room temperature for 15 minutes.
- **9.12** Proceed immediately to the next step of the protocol to remove excess polymerase.

1X SMRTbell bead cleanup

- 9.13 Add 100 µL of resuspended, room-temperature SMRTbell cleanup beads to each sample
- 9.14 Pipette-mix the beads until evenly distributed and quick-spin if necessary to collect all liquid from the sides of the tube.
- 9.15 Incubate at room temperature for 10 minutes to allow DNA to bind beads
- 9.16 Place sample on an appropriate magnet and allow beads to separate fully from the solution
- 9.17 Slowly remove the cleared supernatant without disturbing the beads. Discard the supernatant.
- **DO NOT USE EtOH.** Proceed immediately to the elution. It is important not to let the beads dry out.

Remove sample from the magnet and **immediately** add **Loading buffer** to each tube and resuspend the beads by pipette mixing.

9.18

9.7

	Revio SPRQ Polymerase Kit
Loading buffer	23 μL

- **9.19** Quick-spin the samples to collect any liquid from the sides of the tube.
- **9.20** Incubate at **room temperature** for **15 minutes** to elute DNA
- **9.21** Place sample on magnet and allow beads to separate fully from the solution.
- 9.22 Slowly transfer 23 µL of cleared eluate without disturbing the beads to a **new tube protected from light**. Discard the old tube with beads. The sample is now ready for sequencing (see Section 10).

PROTOCOL COMPLETE

Important: Polymerase-bound libraries can be stored at 4°C for up to 1 week, or at -20°C for up to 6 months prior to sequencing. Note that the Loading buffer is light sensitive.

10. Preparing sequencing internal control and sample for sequencing

Step	Instructions	
	Dilute the sequencing contro	ol using the volumes
	Dilution 1	
	Component	Volume
10.1	Dilution buffer	19 μL
	Sequencing control	1 μL
	Total volume	20 μL
	Pipette mix and quick-spin ir	n a microcentrifuge t
Dilute Dilution 1 using the volumes listed below. Dilution 2		

Dilution 2

Component Volume

10.2

Dilution buffer 19 μL

Dilution 1 1 μL

Total volume 20 μL

Pipette mix and quick-spin in a microcentrifuge to collect liquid.

Dilute Dilution 2 using the volumes listed below.

Dilution 3						
Volume						
19 μL						
1 μL						
20 μL						

10.3

Pipette mix and quick-spin in a microcentrifuge to collect liquid.

Prepare sample for sequencing. Add the following components to the Revio SPRQ sequencing reagent plate.

Sequencing reagent plate sample						
Component	Volume					
Sample from step 10.22	23 μL					
Diluted internal sequencing control (Dilution 3)	1 μL					
Total volume	24 μL					
	Component Sample from step 10.22 Diluted internal sequencing control (Dilution 3)					

10.5

Load exactly 23 μ L of sample prepared in 10.4 per sequencing well or store at 4°C for up to 24 hours before use. For long-term storage, store the sample at -20°C.

For Run Design, ensure the following specifications are selected:

Use Adaptive Loading: Off

Application: PureTarget repeat expansion/carrier/custom

Analysis Workflow:

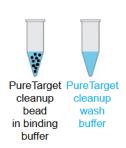
- PureTarget repeat expansion: PureTarget repeat expansion
- PureTarget carrier: Target Enrichment
- PureTarget custom: Target Enrichment

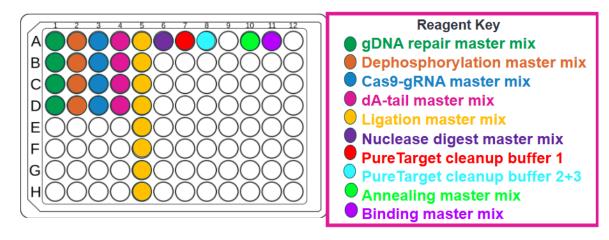
Target and repeat definitions:

10.6

- PureTarget repeat expansion: PureTarget repeat expansion panel 2.0
- PureTarget carrier: PureTarget carrier panel 1.0
- PureTarget custom: user provided bed file. Please reference the SMRT Link user guide for bed file format specifications

If setting up Target Enrichment analysis for PureTarget custom or in SMRT Analysis after sequencing, the user must select the following specifications under "Advanced":


- Include Fail Reads: On
- Padding around regions (bp): 0



Appendix

Master mix preparation and plating quick guide

Reagent master mix plate layout – plate positions of master mixes for gDNA repair, dephosphorylation, Cas9-gRNA digestion, dA tailing, adapter ligation, nuclease digestion, PureTarget cleanup, and ABC.

Quick guide - reagent master mix preparation for automation:

- Quick pulse vortex master mixes 5 times with an end-to-end flip in between, and spin down
- When pipetting the master mix into the well, only dispense to the 1st stop
- Ligation master mix is viscous, pipette slowly to minimize liquid retention in the tip
- PureTarget cleanup bead is heavy and requires thorough resuspension by vortexing
- Master mix overage calculation includes minor adjustments to increase enzyme utilization

Day1				
DNA repair (5 μL/rxn)	1X	96X+overage		
Nuclease free water	0.94	117		
Repair buffer	3.5	454	Plate 151 μL each well to A1-D1	
End repair mix	0.06	8		
DNA repair mix	0.5	70		

Dephosphorylation (5 µL/rxn)	1X	96X+overage	
Nuclease free water	0.9	110	Dieto 151 ul goob well to A2 D2
cas9 buffer	3	389	Plate 151 μL each well to A2-D2
Phosphatase	1.1	150	

Cas9-gRNA (5 μL/rxn)	1X	96X+overage	
Nuclease free water	3.75	489	
cas9 buffer	0.5	65	Plate 151 μL each well to A3-D3
cas9 nuclease (20uM)	0.15	19	
gRNA mix (5uM)	0.6	76	

		Day2		
dA tailing (4 μL/rxn)	1X	96X+overage		
Nuclease free water	1.125	152		
dA tail buffer	2.6	350	Plate 126 µL each well to A4-I	
dATP (100mM)	0.025	4		
Taq DNA pol	0.25	34		
Adapter ligation (10 µL/rxn)	1X	96X+overage		
Nuclease free water	0.5	62		
Ligation mix*	9.0	565 µL twice	Plate 151 μL each well to A5-H5	
Ligation enhancer	0.5	68		
Nuclease digestion (13 µL/rxn)	1X	10X+overage		
dA tail buffer	7	87	DI . 454	
Nuclease mix	4.5	56	Plate 151 μL to A6	
PureTarget nuclease	1.5	19		
Master mix plate will be move	ed to be at ro	om temperature	after 2nd nuclease incubation	
PureTarget cleanup	1X	1X+overage		
PureTarget cleanup buffer 1	28	38	Plate 38 µL to A7	
PureTarget cleanup buffer 2+3	1X	1X+overage		
PureTarget cleanup buffer 2	14	19	Plate 38 µL to A8	
PureTarget cleanup buffer 3	14	19		

PureTarget cleanup bead binding master mix (105 µL/rxn)	1X	1X+overage		
PureTarget cleanup bead	5	7	Add to a 2 mL tube and load 147 μL	
PureTarget cleanup binding buffer	100	140		
PureTarget cleanup wash buffer (EtOH added)	400	600	Add to a 2 mL tube and load 600 μL	
Annealing master mix (25 µL/rxn)	1X	1X+overage		
Annealing buffer	12.5	15	Plate 30 μL to A10	

Binding master mix (50 μL/rxn)	1X	1X+overage	
Polymerase dilution buffer	44	53	Plate 30 μL to A11
Sequencing polymerase	6	7	
Loading buffer	23	74	Add to a 2 mL amber tube and load 74 µL

15

12.5

Standard sequencing primer

Revision history (description)	Version	Date
Initial release	01	September 2025
Minor updates and updated DIN to >8	02	October 2025
Updated library complex storage condition	03	November 2025

Research use only. Not for use in diagnostic procedures. © 2025 Pacific Biosciences of California, Inc. ("PacBio"). All rights reserved. Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third-party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at pacb.com/license. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio, Onso, Apton, Kinnex, PureTarget, SPRQ, and Vega are trademarks of PacBio.

