Mount Sinai School of Medicine

Single Molecule Real-Time (SMRT[®]) Sequencing of Genes Implicated In Autosomal Recessive Diseases

PACIFIC BIOSCIENCES®

2012 ASHG
Conference,
San Francisco,
California

Yan Guo¹, Ali Bashir², Edith Gould², Ruth Kornreich², Lisa Edelmann², Tracy Brandt², Yumi Kasai², Jason Chin¹, Ellen E. Paxinos¹, Andrew Kasarskis², Eric Schadt²

1) Pacific Biosciences, Menlo Park, CA., USA 2) Mount Sinai School of Medicine, Dept. of Genetics and Genomic Sciences, New York, NY

Introduction

- In today's clinical molecular laboratories, diseasecausing mutations are mostly detected by genotyping or Sanger sequencing.
- To demonstrate the potential advantages of Single Molecule, Real-Time (SMRT[®]) sequencing, we conducted a proof-of-concept experiment comparing SMRT sequencing to a clinically-offered test.
- We queried 12,000 bp representing three clinicallyrelevant genes underlying autosomal recessive

Data and Analysis	5 VVORKTIOW
Continuous Long Reads (CLR) d	ata
	CLR Read represents a single "pass" across each molecule sequenced
Circular Consensus Sequencing	(CCS) data
	Continued generation of reads per insert size
	CCS Read represents the consensus generated from multiple passes across a molecule

Normal vs. Carrier Sample Comparison

diseases in the Ashkenazi Jewish population from samples previously genotyped using multiplex PCR/allele-specific primer extension using the Luminex[®] FlexMAP[™] bead-based approach.

Gene Targets

Diagona	Cana	A m		mplicons	
Disease	Gene Exc	EXONS	#	Sizes (bp)	
Canavan	ASPA	1 – 6	8	401 – 638	
Tay-Sachs	HEXA	1 - 14	13	237 - 818	
Nieman-Pick	SMPD1	1 – 6	8	425 – 747	

SMRT[®] Sequencing Workflow

Comparison of normal and carrier sequencing highlights variants. For each amplicon, the score at any base position corresponds to the ratio of bases supporting the reference of the normal sample minus the ratio of bases supporting the reference in the carrier. Positive values indicate variation in the normal sample. Negative values correspond to variation in the carrier sample.

Quiver Detects Homopolymer Deletions

SMRT[®] Sequencing Performance

SMRT [®] sequencing	
# of SMRT [®] Cells per sample	1
# of Movies per SMRT Cell	2
Readlength	
Mean Mapped Readlength	2,642 bp
95th %ile Mapped Readlength	6,791 bp
Maximum Mapped Readlength	11,094 bp

Standard Metrics	
Accuracy	
Mean Mapped CCS Read Accuracy	98.04%

Variant	p.E285A het ⁽¹⁾		
	Normal	Carrier	
Genotyping	Ν	Υ	
SMRT	Ν	Υ	
¹ HGVS NM_000049.2: c.854A>C; build 37.3, Chr17: 3402294			

Gene

ASPA

Gene	HEXA		
Variant	c.1421+1G>C het ⁽²⁾		
	Normal	Carrier	
Genotyping	Ν	Y	
SMRT	Ν	Y	
² HGVS NM 000520.4: c.1421+1G>C: build 37.3. Chr15: 72638575			

Gene	SMPD1		
Variant	c.996delC het ⁽³⁾		
	Normal	Carrier	
Genotyping	Ν	Y	
SMRT	Ν	Y	
³ HGVS NM_000543.4: c.996delC; build 37.3 Chr11: 6413291			

Other Variation

dbSNP rs12948217⁽⁴⁾ rs71467507⁽⁵⁾

Region in SMPD1 in which Quiver correctly calls homopolymer deletion. Naïve alignment strategies lead to difficulty in placing deletions within homopolymers.

Conclusions

- From a single SMRT[®] Cell, we queried ~12,000 bases from 29 amplicons of 3 genes with high coverage, and can easily called known variants.
- A single SMRT Cell can be sequenced in 90 minutes, suggesting a rapid, cost-effective method for routine sequencing entire genes.
- Quiver (<u>https://github.com/PacificBiosciences/GenomicConsensus</u>) allows indel calling even in homopolymers.
- Using SMRT Sequencing, we were able to detect variants not assayed with standard genotyping panels.

Reference:

Mauricio O Carneiro^{1*}, Carsten Russ², Michael G Ross², Stacey B Gabriel¹, Chad Nusbaum² and Mark A DePristo¹ **Pacific biosciences sequencing technology for genotyping and variation discovery in human data** Carneiro et al. BMC Genomics 2012, 13:375 http://www.biomedcentral.com/1471-2164/13/375

Carrier Status	Normal	Carrier	Normal	Carrier	
SMRT	Ν	Y	Ν	Y	
⁴ HGVS NC_000017.10:g.3397702C>T; build 37.3, Chr17: 3397702					
⁵ HGVS NC_000011.9:g.6411930C>T; build 37.3, Chr11: 6411935					
⁶ HGVS NC_000011.9:g.6412931T>C; build 37.3,Chr11:6412931					
⁷ HGVS NC_000011.9:g.6415882G>A; build 37.3,chr11:6,415,882					

Acknowledgements

The authors would like to thank Anand Sethuraman and David Alexander for their generous help in running QUIVER and generating plots for the poster.

Pacific Biosciences, PacBio, SMRT, SMRTbell and the Pacific Biosciences logo are trademarks of Pacific Biosciences of California, Inc. All other trademarks are the property of their respective owners. © 2012 Pacific Biosciences of California, Inc. All rights reserved.