Full-length HIV-1 env Deep Sequencing in a Donor with Broadly Neutralizing V1/V2 Antibodies

Melissa Laird1, Ben Murrell2, Elise Landais3, Caroline Ignacio2, Terri Wrin4, Sergei Pond2, Douglas Richman2,5, Pascal Poignard3,6, Davey Smith2, Ellen Paxinos1

1Pacific Biosciences, Menlo Park, California; 2University of California San Diego, La Jolla, California; 3The International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, California; 4Monogram Biosciences, LabCorp, South San Francisco, California; 5VA San Diego Healthcare System; 6The Scripps Research Institute, La Jolla, California.

Introduction
Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAb) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations.

Objective
To use full-length HIV env SMRT® Sequencing to examine viral dynamics and immune escape in an HIV-1 subtype A-infected individual who developed potent, broadly neutralizing antibodies targeting the V1/V2 loop.

Subject Information

![Subject Information Diagram]

Figure 1. Donor PC64 developed potent, broadly neutralizing antibodies, peaking at 30 months post-infection (MPI). Samples were collected from enrollment in this study to 48 MPI.

Workflow

Day 1
- Extract viral RNA
- cDNA Generation

Day 2
- PCR screen

Day 3
- Iterative PCR

Day 4
- SMRTbell™ Preparation

Day 5
- Align Primers/Binder Polymerase

Day 6
- SMRT Sequencing
- Full-length Envelope Analysis (FLEA)

HIV env SMRT Sequences Match Clonal envs

![HIV env SMRT Sequences Match Clonal envs Diagram]

Table 1. Summary of full-length HIV env SMRT Sequencing. Circular consensus sequences (CCS) comprised 6 passes or more over the read of insert were used for further analysis.

<table>
<thead>
<tr>
<th>MPI</th>
<th>Viral Load (IU/mL)</th>
<th>Raw Reads</th>
<th>CCS (6-pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25200</td>
<td>8521</td>
<td>1770</td>
</tr>
<tr>
<td>2</td>
<td>25500</td>
<td>28,819</td>
<td>6019</td>
</tr>
<tr>
<td>3</td>
<td>16300</td>
<td>37,669</td>
<td>7957</td>
</tr>
<tr>
<td>6</td>
<td>150000</td>
<td>46,325</td>
<td>9439</td>
</tr>
<tr>
<td>9</td>
<td>169000</td>
<td>43,571</td>
<td>8611</td>
</tr>
<tr>
<td>12</td>
<td>64000</td>
<td>9,731</td>
<td>1813</td>
</tr>
<tr>
<td>18</td>
<td>59300</td>
<td>61,688</td>
<td>12438</td>
</tr>
<tr>
<td>24</td>
<td>43600</td>
<td>34,718</td>
<td>7272</td>
</tr>
<tr>
<td>30</td>
<td>79600</td>
<td>44,387</td>
<td>9670</td>
</tr>
<tr>
<td>36</td>
<td>81543</td>
<td>67,307</td>
<td>14727</td>
</tr>
<tr>
<td>42</td>
<td>109506</td>
<td>41,175</td>
<td>8892</td>
</tr>
<tr>
<td>48</td>
<td>303680</td>
<td>47,855</td>
<td>11479</td>
</tr>
</tbody>
</table>

SMRT Sequencing

![SMRT Sequencing Diagram]

Figure 3. HIV env amplicons were sequenced on the PacBio® RS II using P5-C3 chemistry and standard protocols.

Mapping Viral Escape in HIV env

![Mapping Viral Escape in HIV env Diagram]

Figure 5. Amino acid dynamics throughout infection in PC64 at particular residues within epitopes in HIV env under strong selective pressure from V1/V2 neutralizing antibodies.

Functional Validation of Viral Escape

![Functional Validation of Viral Escape Diagram]

Figure 6. (A) Neutralization of PC64 autologous pseudoviruses by a PC64V36 mAb (B) Color-coded decrease in neutralization IC50 for single aa JRCSF mutant pseudovirus (AlaScan) compared to WT by PC64V36 mAbs, displayed on the BG505-SOSIP 3D structure.

Conclusions

- Full-length HIV env SMRT sequences provide an unprecedented view of HIV env dynamics throughout the first four years of infection.
- Longitudinal full-length HIV env deep sequencing allows
 - Accurate phylogenetic inference
 - Detailed view of epitope escape dynamics
 - Identification of minor variants.
- These data will prove critical for understanding how HIV env evolution drives development of antibody breadth and potency

Acknowledgements: This research was supported in part by the National Institutes of Health (AI090970, AI100665, AI036214, U01GM110749, GM093939), and the UCSD Center for AIDS Research (Developmental Grant, AI036214, Bioinformatics and Information Technologies Core).