Capturing the chicken transcriptome with PacBio long read RNA-seq data
OR
Chicken in awesome sauce: a recipe for new transcript identification

Gladstone Institutes
Pacific Biosciences
Sean Thomas and Alisha Holloway
Motivation

• Overarching goal: understand gene regulation during heart development and why children are born with congenital heart defects

• Accelerate discovery to clinical practice by fostering collaborations of basic, translational and clinical researchers

• www.benchtobassinet.org
Motivation

Chicken hearts are being used as models of cardiac development.
Motivation

Functional genomics studies of the molecular mechanisms behind cardiac development require solid genome and transcript annotations.
Motivation

Poor annotations are common for many model organisms that could be useful for understanding heart development and evolution.
Motivation

Koshiba-Takeuchi et al. 2009, Nature

Turtle

Chicken

Tbx5 expression

Koshiba-Takeuchi et al. 2009, Nature
Motivation

Current best chicken annotations, as of 2012*: Ensembl and refSeq

refSeq annotation contained only 6,459 transcripts, but were well-polished

Ensembl annotation contained ~20k transcripts but with many errors

mouse and chicken have similar genome sizes and numbers of genes, but Ensembl annotation for mouse has ~95k transcripts

*galGal3 assembly
Motivation

Available annotations were unreliable.

Current annotations

Strengths and shortcomings

RefSeq
excellent quality, incomplete coverage

Ensembl
good exon coverage, hit-and-miss isoform assembly
Motivation available annotations were unreliable

conservation

Ensembl annotation

non-chicken refSeq

RNA-seq data

Znf503, a likely regulator of heart development
Acquired deep short read data from many tissue types
 Illumina data – 150 million uniquely mapping fragments
 Tissues – brain, cerebellum, heart, kidney, liver, testicle
Acquired EST data from existing databases
Employed de novo transcriptome assembly tools to generate annotation
 Trinity
 MAKER
Assembly of exons is possible with short reads but assembling isoforms is trickier...

Blue boxes are exons
Black lines show exons joined by:
1. exon spanning reads
2. paired-end reads
Solution?
Three exons can be joined by:
1. one end of a pair mapping to exon 1
2. other end spanning exons 2 & 3

Can’t join 2 - 3 - 4 because exon 3 longer than insert size
Assembly of exons is possible with short reads but assembling isoforms is trickier...

Assembly of Illumina reads yielded 120k distinct contigs with average length of ~600bp, well below median transcript length

Median Transcript Length
Chicken – 1.2kb
Mouse – 1.5kb
Improving model organism genome annotations

i. sequence full length transcripts

embryonic chicken heart RNA

↓

full length cDNA

↓

PacBio SMRTBell libraries

↓

long read sequencing (PacBio)

ii. compare new data to current annotations *

iii. improve existing annotations
isolate mRNA
embryonic chicken hearts

generate cDNA

size-select
0-1kb
1-2 kb
2-3 kb
3+ kb

create libraries

sequence

post-processing
ID full length reads
trim primers & polyA tails

error correction
long error-prone read

alignment
long corrected read
galGal4 genome

sequence
short high-fidelity reads

gene modeling
1,508,184 subreads mapped uniquely (~72%) to galGal4 assembly
Most reads cover full length of transcript

All Subreads – includes incompletely sequenced transcript

HQRegion Subread – completely sequenced >= 1x

HQRegion Full-Pass Subreads – completely sequenced >= 2x
Most reads begin at the 5’ end of transcripts and end at the 3’ end.
Coverage of refSeq transcripts
Example of data...good existing annotation
Example of current coverage...
New genome assembly, new annotation

New ensembl annotation based on galGal4 fixed many of the issues that motivated our efforts
Remember this gene? available annotations were unreliable

Znf503, a likely regulator of heart development
Znf503, a likely regulator of heart development
New genome assembly, new annotation

New ensembl annotation based on galGal4 fixed many of the issues that motivated our efforts

However, the PacBio data contains ~2,000 transcripts that represent improvements to even this newest annotation
Categories of annotation improvements...

Illumina tag density

B2B PacBio isoforms

Ensembl 2013 annotation

RefSeq annotation

corrected genes missing from Ensembl
Categories of annotation improvements...

- Illumina tag density
- B2B PacBio isoforms
- Ensembl 2013 annotation
- RefSeq annotation

corrected exons missing from Ensembl
Categories of annotation improvements...

Illumina tag density
B2B PacBio isoforms
Ensembl 2013 annotation
RefSeq annotation

identify completely new isoforms
Categories of annotation improvements...

- Illumina tag density
- B2B PacBio isoforms
- Ensembl 2013 annotation
- RefSeq annotation

corrected false exons
Categories of annotation improvements...

- B2B PacBio isoforms
- Ensembl 2013 annotation
- Illumina tag density
- RefSeq annotation

identify new transcription start sites
Categories of annotation improvements...

- Illumina tag density
- B2B PacBio isoforms

identify new low-abundance genes/exons
Mapped ends of PacBio reads (GMAP) exhibit systematic splice donor site errors.
Peculiar buildup at 3’ end of reads...
Error correction wasn’t really useful in this case (good underlying genome build)

1. short reads aligned to long read

2. consensus of aligned reads corrects error

long corrected read
Summary and recommendations

1. New Ensembl annotation fixed many problematic transcripts
2. PacBio data added another 2,000 transcripts to the set expressed in embryonic chicken hearts

Recommendations for others with similar projects

1. Select mRNAs with mature 5’cap and poly-A tail to ensure full length transcript
2. Perform normalization using double stranded nuclease to get greater coverage
3. Don’t worry about error correction if you’ve got a good reference genome
4. Be aware of some of the systematic errors associated with mapping results
Acknowledgements

Jason Underwood
Elizabeth Tseng
Luke Hickey

Gladstone Institutes

Alisha Holloway
Sean Thomas