X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Current Opinion in Microbiology: Bacterial Methylomes in Review – ‘An Exciting Era’

Tuesday, April 23, 2013

A new review paper from Brigid Davis, Michael Chao, and Matthew Waldor at Harvard Medical School considers a number of recent studies and findings that have used single molecule, real-time (SMRT®) sequencing to generate epigenomic information. “Entering the era of bacterial epigenomics with single molecule real time DNA sequencing” was recently published in Current Opinion in Microbiology.

In the review, the authors note the importance of fully understanding and analyzing genome-wide methylation data, but say that technologies to date have not made it feasible to generate this information. “The advent of new sequencing platforms in the last decade has allowed the pace of whole genome sequencing to increase exponentially,” they write. “Meanwhile, large scale analyses of DNA modification have lagged far behind, resulting in a widening gap between the extents of genomic and epigenomic knowledge.”

With the availability of SMRT Sequencing, the only sequencing platform that simultaneously gathers base modification data while sequencing the DNA, that gap may now begin to shrink considerably. The authors note, “This technological advance sets the stage for comprehensive, mechanistic assessment of the effects of bacterial DNA methyltransferases (MTases) — which are ubiquitous, extremely diverse, and largely uncharacterized — on gene expression, chromosome structure, chromosome replication, and other fundamental biological processes.”

Waldor and his colleagues review a number of recent studies that have utilized SMRT Sequencing for characterizing bacteria, noting that in many cases the findings were unexpected and revealed a significant amount of new information that could not have been predicted from DNA sequence alone. They point to the well-studied Dam methyltransferase, reporting that this epigenetic mark has been linked to the start of DNA repair and chromosome replication as well as to the modulation of gene expression and virulence in pathogens.

In the future, the authors note, merging interpretations from methylome data with other genome-wide information will become increasingly critical to analyze bacteria in context for a comprehensive view of biological processes. “Epigenomic profiling is likely to be particularly powerful when coupled with additional investigative approaches such as transcriptome analyses,” they write.

The authors state, “we are now poised to begin an exciting era of characterizing the roles of DNA modifications throughout the bacterial kingdom.”

And while we’re on the subject, if microbial genomics is up your alley, don’t miss our workshop on epigenomes of microbes at the ASM annual meeting next month (Saturday, May 18, 1:00 pm). It’s workshop 24, “Studying Whole-Genome Microbial Epigenetics” and you can register for it as you sign up for the conference.

Subscribe for blog updates:

Archives