With the release of the award-winning Sequel II System, 2019 was an exciting year for the SMRT Sequencing community. We were inspired by our users’ significant contributions to science across a wide range of disciplines. As the year draws to a close, we have taken this opportunity to reflect on the many achievements made by members of our community, from newly sequenced plant and animal species to human disease breakthroughs. “It has been another phenomenal year for science. The introduction of the Sequel II System will accelerate discovery even more, and I can’t wait to see what 2020 will…
It’s time to revisit the way scientists are using 16S rRNA gene sequencing to study microorganisms, according to a team of Jackson Laboratory researchers. Popular targets for taxonomy and phylogeny studies because of their highly conserved nature, amplified sequences of the 16S ribosomal RNA genes can be compared with reference databases to determine the identity of the microorganisms that comprise a metagenomic sample. Sequences with a > 95% match are generally considered to represent the same genus, for example, while > 97% matches are considered the same species. However, these matches are often made by sequencing only part of the nine-region, ~1500 bp…
We were delighted to host an educational workshop at last month’s annual meeting of the American Society of Human Genetics (ASHG), where we had the opportunity to feature talks from two customers as well as an overview of SMRT Sequencing. If you couldn’t attend, check out the videos or read the highlights below. Emily Hatas, our director of business development, kicked things off with a look at how SMRT Sequencing has evolved over the years. Compared to the first instrument we offered, the Sequel II System represents a 100-fold improvement in read length and a 10,000-fold improvement in throughput. As…
Until recently, enriching for certain regions of the genome has been virtually impossible. Repeat expansions, extreme GC regions, and other genomic elements are very difficult to target using traditional enrichment methods. That’s why our new “No-Amp” targeted sequencing application — a streamlined, amplification-free approach based on the CRISPR/Cas9 system — is a valuable addition to the SMRT Sequencing toolbox. No-Amp targeted sequencing combines the CRISPR/Cas9 enrichment method with SMRT Sequencing. Pacific Biosciences does not sell a kit for carrying out the overall No-Amp Targeted Sequencing method. Use of these methods may require rights to third-party owned intellectual property. The method…
Patients with myotonic dystrophy type 1 (DM1) want to know their size — the size of the expansion of repeats of the unstable CTG sequences that cause the progressive deterioration of neuromuscular functions that they might face. Size matters to them, because it has been found to correlate with the severity and onset of symptoms, which can range from severe cardiac and respiratory abnormalities and intellectual impairment in children, to muscle weakness, hypersomnolence or cataracts in adults. The earlier the onset, the more severe the symptoms tend to be. The autosomal disorder, which is the most common form of inherited…
We’re thrilled to announce the launch of the Sequel II System, reducing project costs and timelines with approximately eight times the data output compared to the previous Sequel System. It enables customers to comprehensively detect human variants ranging in size from single nucleotide changes to large, complex structural variants. The system is also ideal for standard applications such as de novo assembly of large genomes and whole transcriptome analysis using the Iso-Seq method. The Sequel II System is based on the proven technology and workflow underlying the previous version of the system, but contains updated hardware to process the new…
For the thousands of scientists who attended The Plant and Animal Genome Conference in San Diego this January, the sentiment seemed to be “ask not if PacBio is for you, but how PacBio can work best for you.” The answer that emerged during PacBio’s PAG workshop and subsequent SMRT Informatics Developers Conference was a complex one. Recent developments, such as new chemistry, new SMRT Cells, the SMRTbell Express Template Prep Kit, and SMRT Link 6.0 software have already led to faster and easier library prep, longer reads with more data and reliability, better transcript characterization (Iso-Seq) and phasing (FALCON-Unzip) capabilities…
Cotton crops the world over have benefited from the pest-killing protein from Bacillus thuringiensis (Bt), first used in sprays and then, in 1996, transgenic crops, resulting in reduced insecticide use, enhanced biological control, and increased farmer profits. But the precious plants are under threat once again by a tiny but mighty pest: pink bollworm (Pectinophora gossypiella). In India, where more than 7 million farmers have planted 10.8 million hectares of transgenic Bt cotton, the lepidopteran pest has developed resistance to two different forms of the toxin that made the transgenic crops so effective, creating catastrophic economic losses. Scientists have been…
Today we’re pleased to announce the release of Sequel System 6.0, including new software, consumable reagents and a new SMRT Cell. Combined, the enhancements in the release improve the performance and affordability of Single Molecule, Real-Time (SMRT) Sequencing by providing individual long reads with greater than 99% accuracy, increasing the throughput up to 50 Gb per SMRT Cell, and delivering average read lengths up to 100,000 base pairs, depending on insert size. These improvements are expected to greatly enhance the accuracy and cost effectiveness of applications such as whole genome sequencing, human structural variant detection, targeted sequencing and RNA transcript isoform sequencing (Iso-Seq method). Estimated…
Many investigators rely on targeted sequencing approaches for deep dives into genomic regions of interest. By designing specific probes — often using short-read sequences directed towards the exome and supported by existing reference genomes or transcriptome assemblies — scientists can home in on exactly the area they want to explore. But what about sequences in intergenic regions not covered by short reads, which could contain crucial regulatory elements varying between populations that might be of functional and evolutionary importance? Or, what about species lacking high-quality reference genomes to guide probe design? A team of Norwegian researchers are tackling these challenges…
Many scientists who participated in the original Human Genome Project shared a grand vision that individual genomes would one day be part of routine medical care. Genomics veteran Richard Gibbs, founder and Director of the Genome Sequencing Center at Baylor College of Medicine, tells Mendelspod host Theral Timpson in a new podcast interview that “we are more than halfway [there].” In the podcast, Gibbs shares his perspective on the complementary roles that genomics and genetics approaches have in driving our understanding of human biology. He noted that long before the Human Genome Project gained momentum, the discovery of human single…
Happy DNA Day, everyone! This scientific celebration has us reflecting on the many advancements the community has made in the past year. For a molecule that is sequenced thousands of times a day all over the world, there is still much to learn. Today we’d like to honor some of the remarkable science enabled by SMRT Sequencing since last year’s DNA Day. Scientists have continued to make progress exploring regions of the genome that have long been considered intractable. Two of our favorite stories this year came from the always-challenging Y chromosome. Researchers studying the mosquitoes that carry malaria…
We’re already looking forward to next month’s Personalized Medicine World Conference. Long before “precision medicine” was an industry catchphrase, PMWC was bringing together stakeholders from genomics companies and academic research, regulatory agencies, clinical groups, pharma/biotech, and more. Launched in 2009, the meeting has prompted important discussions as well as insight about how to move the field forward in a thoughtful way. From January 24th to the 27th, some 1,200 PMWC attendees will descend on the Computer History Museum in Mountain View, Calif. The event will kick off with a reception honoring the four awardees of this conference: Merck’s Roger Perlmutter…
We are proud to announce the introduction of several new solutions for targeted sequencing and sample multiplexing on the PacBio® Sequencing System. New Targeted Sequencing Workflow through Collaboration with Roche NimbleGen Today we announced a new workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with large DNA fragments (up to 6 kb) and our Single Molecule, Real-Time (SMRT®) Sequencing to provide a more comprehensive view of variants, transgene integration sites, and haplotype information over multi-kilobase contiguous regions. The laboratory workflow is described in a shared protocol. For each targeted region, SAMtools are used to phase and bin reads by…