X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, July 21, 2020

Review: How Long-Read Sequencing Is Revealing Unseen Genomic Variation

“We are now embarking on an era where all genetic variation in an individual will be completely discovered,” write Glennis Logsdon (@glennis_logsdon), Mitchell Vollger (@mrvollger), and Evan Eichler in a recent Nature Reviews Genetics paper. “Hundreds and ultimately thousands of new human reference genomes will be produced.”  A decade ago that would have sounded impossible, but today this bold proclamation is widely accepted in the genomics community — a telling sign of the remarkable innovation that has driven genome sequencing in recent years. In their review, the University of Washington scientists give credit for much of these accomplishments to advancements in…

Read More »

Wednesday, January 8, 2020

SMRT Grant Winner: Hunting for Answers in Spinocerebellar Ataxia

Cleo van Diemen, University Medical Center Groningen A hearty congratulations to Cleo van Diemen at the University Medical Center Groningen for winning the 2019 Neuroscience SMRT Grant! Van Diemen’s impressive proposal involves using PacBio long-read sequencing to find new genetic mechanisms associated with spinocerebellar ataxia (SCA). While some 70% of SCA patients can get clear diagnostic and prognostic information because they have one of the ~37 genes known to be associated with this condition, 30% of patients have no such clarity. In this project, van Diemen and her colleagues will use their SMRT Grant award to generate highly accurate long…

Read More »

Friday, December 27, 2019

SMRT Sequencing Highlights – Top Publications of 2019

With the release of the award-winning Sequel II System, 2019 was an exciting year for the SMRT Sequencing community. We were inspired by our users’ significant contributions to science across a wide range of disciplines. As the year draws to a close, we have taken this opportunity to reflect on the many achievements made by members of our community, from newly sequenced plant and animal species to human disease breakthroughs.   “It has been another phenomenal year for science. The introduction of the Sequel II System will accelerate discovery even more, and I can’t wait to see what 2020 will…

Read More »

Thursday, December 5, 2019

Two Review Articles Assess Structural Variation in Human Genomes

Two recent review articles discuss the idea that structural variants (SVs) — genetic differences that involve at least 50 base pairs — are numerous, important to human biology, and best detected with long reads. The authors review years of studies that have applied PacBio SMRT Sequencing to identify around 20,000 SVs per human genome. The reviews also report on cases in which SMRT Sequencing has helped scientists discover pathogenic variants that explain diseases for which there had previously been no clear genetic cause. In Nature Reviews Genetics, Steve Ho, Alexander Urban, and Ryan Mills from the University of Michigan and…

Read More »

Tuesday, November 12, 2019

At ASHG Workshop, Customers Describe Long-Read Sequencing of Human Genomes for Disease Gene Discovery and Population Studies

We were delighted to host an educational workshop at last month’s annual meeting of the American Society of Human Genetics (ASHG), where we had the opportunity to feature talks from two customers as well as an overview of SMRT Sequencing. If you couldn’t attend, check out the videos or read the highlights below. Emily Hatas, our director of business development, kicked things off with a look at how SMRT Sequencing has evolved over the years. Compared to the first instrument we offered, the Sequel II System represents a 100-fold improvement in read length and a 10,000-fold improvement in throughput. As…

Read More »

Thursday, October 31, 2019

ASHG 2019: CoLab Session Highlights Structural Variation and Transcriptome Sequencing

At ASHG 2019, PacBio scientists Aaron Wenger and Liz Tseng offered a CoLab presentation. At the annual meeting of the American Society of Human Genetics in Houston, PacBio scientists presented how our Sequel II System performs for structural variant (SV) detection and for whole transcriptome sequencing. The educational workshop focused on experiments that can be done using a single SMRT Cell 8M on the Sequel II System. The event kicked off with Aaron Wenger walking through SV analysis, which he said has mirrored the development path of single nucleotide variants, from proof-of-concept to individual rare disease studies and now to…

Read More »

Monday, July 29, 2019

HiFi Reads Add Unparalleled Accuracy to the Long-Read Sequencing Arsenal

To enable better understanding of biology, sequencing data must be accurate and complete. This is especially true when seeking out variants and determining their implications. Luckily, technical and software improvements for SMRT Sequencing are making it easier to efficiently generate genome assemblies with unparalleled accuracy. As presented in a webinar by PacBio Staff Scientist Sarah Kingan (@drsarahdoom) and GoogleAI Genomics Project Lead Andrew Carroll (@acarroll_ATG), HiFi reads enabled by circular consensus sequencing (CCS) on the new Sequel II System challenge the notion that sequencing technologies require a tradeoff between length and accuracy. Highly accurate long reads (HiFi reads) offer the…

Read More »

Wednesday, April 24, 2019

Now Available: Sequel II System Delivers ~8 Times as Much Data as Previous System

We’re thrilled to announce the launch of the Sequel II System, reducing project costs and timelines with approximately eight times the data output compared to the previous Sequel System. It enables customers to comprehensively detect human variants ranging in size from single nucleotide changes to large, complex structural variants. The system is also ideal for standard applications such as de novo assembly of large genomes and whole transcriptome analysis using the Iso-Seq method. The Sequel II System is based on the proven technology and workflow underlying the previous version of the system, but contains updated hardware to process the new…

Read More »

Thursday, January 24, 2019

Scientists Produce Valuable New Human Structural Variation Resource Using SMRT Sequencing

In an effort to produce a comprehensive list of structural variants in the human genome, scientists from the University of Washington, the University of Chicago, Washington University, and Ohio State University sequenced 15 human genomes and have now released the results of their in-depth analysis. The Cell publication, “Characterizing the Major Structural Variant Alleles of the Human Genome,” comes from lead authors Peter Audano and Arvis Sulovari, senior author Evan Eichler, and collaborators. The data generated by this work “provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity,” the…

Read More »

Wednesday, January 9, 2019

Scientists Resolve Epilepsy-Causing Repeat Expansion with Sequel System

Scientists in Japan report using the unique properties of SMRT Sequencing to detect a structural variant (SV) responsible for a hereditary form of epilepsy. The 4.6 kb intronic repeat insertion was found from low-coverage whole genome sequence data, leading the team to suggest that this approach could be useful for determining the genetic mechanisms behind many unexplained diseases. “Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases” comes from lead author Takeshi Mizuguchi, senior author Satoko Miyatake, and collaborators at Yokohama City University and the University of Occupational and Environmental Health School…

Read More »

Tuesday, September 18, 2018

Must-Have PacBio Applications & Services: Getting the Most from SMRT Sequencing

In addition to the most common applications, like whole genome sequencing for de novo assembly, there are several other features you can utilize to advance your science or incorporate to offer your customers a broad range of the best PacBio services. Here’s a sampling of the most recent updates and releases.   Iso-Seq Analysis for Genome Annotation or Targeted Isoform Discovery The isoform sequence (Iso-Seq) application generates full-length cDNA sequences – from the 5’ end of transcripts to the poly-A tail – eliminating the need for transcriptome reconstruction using isoform-inference algorithms. It’s even easier to help your customers annotate their…

Read More »

Thursday, September 6, 2018

New Look at Breast Cancer Cell Line Sheds Light on Structural Complexity

In an exciting paper that made the cover of Genome Research, scientists from Cold Spring Harbor Laboratory and collaborating institutions report the genome sequence and transcriptome of a commonly used breast cancer cell line. They determined that the cell line harbors far more structural variants than previously thought with results that call into question cancer genome analysis based solely on short-read sequencing data. In “Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line,” lead author Maria Nattestad, senior author Michael Schatz, and collaborators describe an in-depth investigation of SK-BR-3, an important…

Read More »

Tuesday, September 4, 2018

Webinar Summary: Developing Benchmark Sets for Structural Variants

Justin Zook A map of every individual’s genome will soon be possible, but how will we know if it is correct? Benchmarks are needed in order to check the performance of sequencing, and any genomes used for such a purpose should be comprehensive and well characterized. Enter the Genome in a Bottle Project (GIAB), a consortium of geneticists and bioinformaticians committed to the creation and sharing of high-quality reference genomes. Unlike other initiatives, such as the 1000 Genomes Project, that are seeking to sequence many representatives of different populations, GIAB is interested in sequencing just a few individuals, but deeply…

Read More »

Monday, April 30, 2018

An Interview with Baylor’s Fritz Sedlazeck on New Long-Read Algorithms

Fritz Sedlazeck Nature Methods just published “Accurate detection of complex structural variations using single-molecule sequencing,” a publication that presents the NGMLR aligner and Sniffles structural variant caller, both designed for use with long-read sequencing data. We chatted with developer and lead author Fritz Sedlazeck from the Human Genome Sequencing Center at Baylor to learn more. Q: Why was a new alignment tool needed when many scientists already use BWA and other methods? A: When I started my postdoc in Mike Schatz’s lab at Cold Spring Harbor, I had the opportunity to look at the complex SK-BR-3 cell lines. We soon…

Read More »

Tuesday, April 24, 2018

Nature Webinar and SMRT Grant Winner Explore Structural Variation for Disease Gene Discovery

Structural variants account for most of the base pairs that differ between human genomes, and are known to cause more than 1,000 genetic disorders, including ALS, schizophrenia, and hereditary cancer. Yet they remain overlooked in human genetic research studies due to inherent challenges of short-read sequencing methods to resolve complex variants, which often involve repetitive DNA.   At a recent webinar co-hosted by Nature Research, Professor Alexander Hoischen joined Principal Scientist Aaron Wenger to discuss how advances in long-read sequencing and structural variant calling algorithms have made it possible to affordably detect the more than 20,000 such variants that are…

Read More »

1 2 3

Subscribe for blog updates:

Archives